We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter covers other canonical applications of network tomography that have been studied in the literature but fallen out of the scope of the previous chapters. This includes the inference of network routing topology (network topology tomography) and the inference of traffic demands (traffic matrix or origin-destination tomography). It also covers miscellaneous techniques used in network tomography that are not covered in the previous chapters (e.g., network coding). The chapter then concludes the book with discussions on practical issues in the deployment of tomography-based monitoring systems and future directions in addressing these issues.
We study compression for function computation of sources at nodes in a network at receiver(s). The rate region of this problem has been considered under restrictive assumptions. We present results that significantly relax these assumptions. For a one-stage tree network, we characterize a rate region by a necessary and sufficient condition for any achievable coloring-based coding scheme, the coloring connectivity condition. We propose a modularized coding scheme based on graph colorings to perform arbitrarily closely to derived rate lower bounds. For a general tree network, we provide a rate lower bound based on graph entropies and show that it is tight for independent sources. We show that, in a general tree network case with independent sources, to achieve the rate lower bound, intermediate nodes should perform computations, but for a family of functions and random variables, which we call chain-rule proper sets, it suffices to have no computations at intermediate nodes to perform arbitrarily closely to the rate lower bound. We consider practicalities of coloring-based coding schemes and propose an efficient algorithm to compute a minimum-entropy coloring of a characteristic graph.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.