In this study I document the growth rate and age of trees in an old-growth montane Hawaiian wet forest and use these results to evaluate the cyclic succession model for forest dynamics. I used two methods to estimate the age of trees – the crown-class model and radiocarbon dating. Over 6000 trees belonging to eight species were tagged and measured over 7 y on Hawaii Island. Growth rates for the dominant tree (Metrosideros polymorpha) were relatively low (mean = 1.3 mm y−1) and varied with tree size and crown class. 14C-based age estimates for 27 M. polymorpha trees loosely corroborated estimates based on the crown-class method. The oldest tree dated by 14C had a median age of 647 y BP, placing it among the oldest documented angiosperm trees in the northern hemisphere. 14C dating revealed that the upper canopy may be comprised of three distinct age groups of M. polymorpha trees of similar size, with the median age of each group separated by 200–250 y. The high density of large, very old trees in multiple groups is unusual for a tropical forest and indicates that forest development may occur through gap-phase regeneration at a fine scale and stand-level mortality at a coarser scale.