Tankov (2011) improved the Fréchet bounds for a bivariate copula when its values on a compact subset of [0, 1]2 are given. He showed that the best possible bounds are quasi-copulas and gave a sufficient condition for these bounds to be copulas. In this note we give weaker sufficient conditions to ensure that the bounds are copulas. We also show how this can be useful in portfolio selection. It turns out that finding a copula as a lower bound plays a key role in determining optimal investment strategies explicitly for investors with some type of state-dependent constraints.