We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Most of the carbonate samples have a basic well-defined pretreatment protocol for 14C-AMS dating, but particularities of specific organisms have to be treated with care. This is the case of stromatolite samples, in which carbonate is formed by biogenesis and also has a porous structure that could contain recent organic material as a contaminant. In this work, we analyzed the differences in the radiocarbon content by using organic matter removals before chemical treatment with HCl: sodium hypochlorite (NaOCl) a 0.7M solution with pH ∼11, and hydrogen peroxide (H2O2) an 8.8M solution with pH ∼5. These treatments were chosen because they are the most used in stromatolite samples for geochemical analysis. To compare the impact of the organic matter removal treatments in stromatolite samples we also processed them as regular carbonate samples for radiocarbon analysis, with no organic matter removal (control samples). X-ray diffraction and X-ray fluorescence have been used to obtain mineral and elemental characterization, respectively. H2O2 could not influence the results of Mg-calcite concentrate samples. The use of NaOCl appears to have been effective in preserving more material than H2O2 independent of the mineralogical composition of the stromatolite layers. The F14C results after HCl etching for Mg-calcite concentrated samples were similar to those without etching suggesting that the HCl etching does not impact the results in this case. The organic matter removal is more important than the etching procedure for stromatolite samples. NaOCl is more indicated to be used as chemical pretreatment for radiocarbon analysis purposes independent of the mineral matrix of samples.
This study focuses on geochemical research into humic acids and humification processes in lakes of West Antarctica, specifically King George Island and Marie Byrd Land. Humic acids were extracted from recent sediments of Antarctic lakes and analysed using high-precision laboratory methods. The experiments included examining the elemental composition and molecular structure of the humic acids. The results show that the organic matter in sediments of the studied lakes has undergone complete humification processes. However, the molecular structure of humic acids is characterized by a predominance of aliphatic fragments and a significant amount of polysaccharides, which is typical of humic substances in the cold climates of Arctic and Antarctic regions. Thus, the humic substances of Antarctic lakes were found to have a very low degree of maturity and were non-resistant to mineralization. These findings are valuable for understanding the full chain of organic matter transformation processes in Antarctic ecosystems and the global carbon cycle on Earth.
To define the amount, thermal maturity and type of organic matter (OM), a comprehensive analysis of major and trace elements, organic carbon isotope and organic geochemistry was conducted on Lutetian black shales found in the Everek (Bayburt) region of northeastern Turkey. Total organic carbon (TOC) levels in the shale samples range from 0.62% to 6.75%, and type II–III to type III kerogen is generated, displaying a combination of high terrigenous and low marine OM. The δ13C values (ranging from –28.22‰ to –28.23‰), aromatic hydrocarbon compounds (methyl phenanthrene, dibenzothiophene, tri-aromatic and monoaromatic steroids), saturated hydrocarbon compounds (sterane and terpane), acyclic isoprenoids, n-alkane distribution (n-C13–n-C36) and inorganic geochemical characterization support that the black shales were deposited in a terrestrial-marine transition environment and had a high proportion of terrestrial OM with small amounts of marine OM preserved in relatively arid to hot climate and oxic to suboxic conditions. The analysis of biomarker thermal maturity markers, Tmax (ranging from 449–458 oC) and estimated vitrinite reflectance (varying from 0.92 to 1.08%) values suggest that the black shales have reached the oil window. As a result, black shales are thought to contain low to high amounts of TOC, have a mixed kerogen type, reach a high thermal maturity level and produce little hydrocarbons.
Black shale is a dark-colored mudrock containing organic matter that may have generated hydrocarbons in the subsurface or that may yield hydrocarbons by pyrolysis. Many black shale units are enriched in metals severalfold above expected amounts in ordinary shale. Some black shale units have served as host rocks for syngenetic metal deposits.
Black shales have formed throughout the Earth's history and in all parts of the world. This suggests that geologic processes and not geologic settings are the controlling factors in the accumulation of black shale. Geologic processes are those of deposition by which the raw materials of black shale are accumulated and those of diagenesis in response to increasing depth of burial.
Depositional processes involve a range of relationships among such factors as organic productivity, clastic sedimentation rate, and the intensity of oxidation by which organic matter is destroyed. If enough organic material is present to exhaust the oxygen in the environment, black shale results.
Diagenetic processes involve chemical reactions controlled by the nature of the components and by the pressure and temperature regimens that continuing burial imposes. For a thickness of a few meters beneath the surface, sulfate is reduced and sulfide minerals may be deposited. Fermentation reactions in the next several hundred meters result in biogenic methane, followed successively at greater depths by decarboxylation reactions and thermal maturation that form additional hydrocarbons. Suites of newly formed minerals are characteristic for each of the zones of diagenesis.
The Mecca Quarry Shale Member from Velpen, Indiana contains abundant vanadium which occurs in solid solution within illite-rich illite-smectite (I-S) having an average content of 1.65 wt. % V, and an overall composition of K0.8(Al2.8Mg0.5Fe0.4V0.3)(Si7.2Al0.8 g)O20(OH)4, analogous to the V-rich dioctahedral mica, roscoelite. The illite contains more than twice as much V as the associated kerogen. Detrital mica has a composition typical of 2M1, muscovite and contains no vanadium. The V-rich illite has a structure and composition typical of formation during normal prograde diagenesis and probably is widespread in the Mecca Quarry Shale because the bed is enriched in V throughout the Midwest. The smectite-to-illite reaction can not be a result of passive burial metamorphism because the host strata were buried no deeper than ~0.5 km at Velpen. The formation of illite occurred in unlithified sediments at shallow depths under the influence of pervasive 80–110°C basinal brines, possibly the same fluids that were responsible for the Mississippi Valley-type lead-zinc mineralization common in the Midwest. The presence of two types of K-rich phyllosilicates may be part of the reason for the lack of correlation between bulk V concentrations and the intensities of X-ray diffraction peaks of illite reported by others.
A study of the mineralogy, chemical composition and structure of poorly-crystalline saponite precipitated from a submarine hot spring in Eyjafjordur, northern Iceland is reported. Special emphasis was placed on the microstructures of the minerals and a possible connection with biological activity during their precipitation. The microstructures of the minerals were found to be very similar to specific clay minerals precipitated from geothermal vents in oceanic rift zones. The composition of the minerals was, however, found to be similar to magnesium silicate scales formed in geothermal installations in Iceland where geothermal waters were mixed with cold fresh waters. High contents of organic substances were found in the clay mineral samples as compared to geothermal precipitates from other localities. Microstructural features of the layer silicates in one of the samples suggest that a gelatinous substance was a precursor of the saponite clay. The organic matter content appears to be greater when the precipitates are more crystalline.
The increasing exploration and exploitation of hydrocarbon resources hosted by oil and gas shales demands the correct measurement of certain properties of sedimentary rocks rich in organic matter (OM). Two essential properties of OM-rich shales, the total specific surface area (TSSA) and cation exchange capacity (CEC), are primarily controlled by the rock’s clay mineral content (i.e. the type and quantity). This paper presents the limitations of two commonly used methods of measuring bulk-rock TSSA and CEC, ethylene glycol monoethyl ether (EGME) retention and visible light spectrometry of Co(III)-hexamine, in OM-rich rocks. The limitations were investigated using a suite of OM-rich shales and mudstones that vary in origin, age, clay mineral content, and thermal maturity.
Ethylene glycol monoethyl ether reacted strongly with and was retained by natural OM, producing excess TSSA if calculated using commonly applied adsorption coefficients. Although the intensity of the reaction seems to depend on thermal maturity, OM in all the samples analyzed reacted with EGME to an extent that made TSSA values unreliable; therefore, EGME is not recommended for TSSA measurements on samples containing >3% OM.
Some evidence indicated that drying at ⩾200°C may influence bulk-rock CEC values by altering OM in early mature rocks. In light of this evidence, drying at 110°C is recommended as a more suitable pretreatment for CEC measurements in OM-rich shales. When using visible light spectrometry for CEC determination, leachable sample components contributed to the absorbance of the measured wavelength (470 nm), decreasing the calculated bulk rock CEC value. A test of sample-derived excess absorbance with zero-absorbance solutions (i.e. NaCl) and the introduction of corrections to the CEC calculation are recommended.
A clay-rich Callovo-Oxfordian sedimentary formation was selected in the eastern Paris Basin (MHM site) to host an underground laboratory dedicated to the assessment of nuclear waste-disposal feasibility in deep geological formations. As described initially, this formation shows a mineralogical transition from an illite-smectite (I–S) mixed-layered mineral (MLM), which is essentially smectitic and randomly interstratified (R = 0) in the top part of the series to a more illitic, ordered (R ⩾ 1) I–S in its deeper part.
This description has been challenged by using the multi-specimen method developed by Drits et al. (1997a) and Sakharov et al. (1999). It is shown that all samples contain a physical mixture of an unusually (?) illitic (∼65% I) randomly interstratified I-Exp (illite-expandable MLM) and of a discrete smectite, in addition to discrete illite, kaolinite and chlorite. Structural parameters of the different clay phases vary little throughout the series. According to the proposed model, the mineralogical transition corresponds to the disappearance of smectite with increasing burial depth.
Comparison with clay minerals from formations of similar age (Oxfordian-Toarcian) throughout the Paris Basin shows that the clay mineralogy in the deeper part of the series originates from a smectite-to-illite transition resulting from a low-temperature burial diagenesis. The anomalous lack of evolution of clay minerals in the upper part of the series is thought to be related to specific interactions between organic matter and clay minerals.
The role of saline lake sediments in preserving organic matter has long been recognized. In order to further understand the preservation mechanisms, the role of clay minerals was studied. Three sediment cores, 25, 57, and 500 cm long, were collected from Qinghai Lake, NW China, and dissected into multiple subsamples. Multiple techniques were employed, including density fractionation, X-ray diffraction, scanning and transmission electron microscopy (SEM and TEM), total organic carbon (TOC) and carbon compound analyses, and surface area determination. The sediments were oxic near the water-sediment interface, but became anoxic at depth. The clay mineral content was as much as 36.8%, consisting mostly of illite, chlorite, and halloysite. The TEM observations revealed that organic matter occurred primarily as organic matter-clay mineral aggregates. The TOC and clay mineral abundances are greatest in the mid-density fraction, with a positive correlation between the TOC and mineral surface area. The TOC of the bulk sediments ranges from 1 to 3% with the non-hydrocarbon fraction being predominant, followed by bitumen, saturated hydrocarbon, aromatic hydrocarbons, and chloroform-soluble bitumen. The bimodal distribution of carbon compounds of the saturated hydrocarbon fraction suggests that organic matter in the sediments was derived from two sources: terrestrial plants and microorganisms/algae. Depth-related systematic changes in the distribution patterns of the carbon compounds suggest that the oxidizing conditions and microbial abundance near the water-sediment interface promote degradation of labile organic matter, probably in adsorbed form. The reducing conditions and small microbial biomass deeper in the sediments favor preservation of organic matter, because of the less labile nature of organic matter, probably occurring within clay mineral-organic matter aggregates that are inaccessible to microorganisms. These results have important implications for our understanding of mechanisms of organic matter preservation in saline lake sediments.
The impact of alkaline solutions (pH = 13.2) on the clay mineralogy of the Callovo-Oxfordian formation hosting the French underground laboratory for nuclear waste disposal investigation (Meuse-Haute Marne site) has been studied experimentally. Initially, each of the four samples selected as representative of the mineralogical transition in this Callovo-Oxfordian formation consists of a mixture of three main clay phases: discrete illite, discrete smectite and a randomly interstratified mixed-layered mineral (MLM) containing ∼65% of non-expandable layers. Clay separates were altered in batch reactors at 60°C using high solution:solid ratios. The mineralogy of this clay fraction and solution chemistry were monitored as a function of reaction time. In addition, the interactions between organic matter and clay particles were investigated using scanning transmission X-ray microscopy (STXM).
The clay mineralogy is little affected even though the pH is still high after 1 y reaction time. The only significant mineralogical evolution is the partial dissolution of the discrete smectite component leading to the formation of a new randomly interstratified illite-expandable MLM. Additional mineralogical transformations lead, for one sample, to the dissolution of micro-crystalline quartz and, for another sample, to the crystallization of a tobermorite-like phase. The low reactivity of clay minerals may be attributed to the presence of organic matter in the samples. In their initial state, all outer surfaces of clay particles are indeed covered with organic matter. After 1 y reaction time, STXM studies showed the basal surfaces of clay particles to be devoid of organic matter, but their edges, which are the most reactive sites, were still protected.
Organic matter is a key element of soil fertility. However, in-soil stocks of organic matter are in decline in specialized crop farms. Reintroducing organic fertilizers could be a way to increase or at least maintain organic matter stocks in these soils. Straw/manure exchanges between crop farms and livestock farms could improve overall land fertility and thus the long-term income of farmers. Here we used a bioeconomic model to estimate the agronomic and economic benefits of straw/manure exchanges as part of a strategy to improve soil fertility. Iterative simulations were run with prices of farmyard manure varying from €0 to €20 ton−1 to identify the price at which a crop farm can buy manure and sell straw without degrading its net income (manure ceiling price) compared to purchasing mineral fertilizer only and ploughing back straw. Parallel simulations were run to identify the price at which a livestock farmer can sell manure and buy straw without degrading its net income (manure floor price) compared to keeping all manure on the farm and buying straw on the market. The key new contributions of this study are that it (i) considers the characteristics of manure beyond its short-term fertilizing value, i.e., better mineralization of humus and a 10% increase in crop yields, (ii) estimates both the economic and agronomic benefits of manure and (iii) assesses the impacts of uncertainties on manure effects and prices. The results show that it is profitable for a French farmer in a conventional field crop system to buy manure at a price between €10 ton−1 in the short term and €18 ton−1 in the long term. The results also show that it is still economically advantageous for a livestock farmer to sell part of their manure, even at a very low price. This study shows that it is possible to better distribute manure resources over a territory in a way that enriches the soils of crop farms without degrading the soils of livestock farms.
The oceans store a substantial fraction of carbon as calcium carbonate (CaCO3) and organic carbon (Corg) and constitute a significant component of the global carbon cycle. The Corg and CaCO3 flux depends on productivity and is strongly modulated by the Asian monsoon in the tropics. Anthropogenic activities are likely to influence the monsoon and thus it is imperative to understand its implications on carbon burial in the oceans. We have reconstructed multi-decadal CaCO3 and Corg burial changes and associated processes during the last 4.9 ky, including the Meghalayan Age, from the Gulf of Mannar. The influence of monsoon on carbon burial is reconstructed from the absolute abundance of planktic foraminifera and relative abundance of Globigerina bulloides. Both Corg and CaCO3 increased throughout the Meghalayan Age, except between 3.0–3.5 ka and the last millennium. The increase in Corg burial during the Meghalayan Age was observed throughout the eastern Arabian Sea. The concomitant decrease in the Corg to nitrogen ratio suggests increased contribution of marine organic matter. Although the upwelling was intense until 1.5 ka, the lack of a definite increasing trend suggests that the persistent increase in Corg and CaCO3 during the early Meghalayan Age was mainly driven by higher productivity during the winter season coupled with better preservation in the sediments. Both the intervals (3.0–3.5 ka and the last millennium) of nearly constant carbon burial coincide with a steady sea-level. The low carbon burial during the last millennium is attributed to the weaker-upwelling-induced lower productivity.
In-home pet food testing has the benefit of yielding data which is directly applicable to the pet population. Validated and standardised in-home test protocols need to be available, and here we investigated key protocol requirements for an in-home canine food digestibility protocol. Participants were recruited via an online survey. After meeting specific inclusion criteria, sixty dogs of various breeds and ages received, during 14 consecutive days, a relatively low and high digestible complete dry extruded food containing titanium (Ti) dioxide. Both foods were given for 7 d in a cross-over design. Owners collected faeces daily allowing daily faecal Ti concentrations and digestibility of nitrogen (N), dry matter (DM), crude ash, organic matter (OM), crude fat (Cfat), starch and gross energy (GE) to be determined. Faecal Ti and digestibility values for all nutrients were not different (P > 0·05) from the second day onwards after first consumption for both foods. One day of faecal collection yielded reliable digestibility values with additional collection days not reducing the confidence interval around the mean. Depending on the accepted margin of error, the food and the nutrient of interest, the minimal required sample size was between 9 and 43 dogs. Variation in digestibility values could in part be explained by a dog’s neuter status (N, crude ash) and age (crude ash, Cfat) but not sex and body size. Future studies should focus on further identifying and controlling sources of variation to improve the in-home digestibility protocol and reduce the number of dogs required.
Carbon, central to astrobiology, shaped the development of the dwarf planet Ceres, a water-rich protoplanet explored by NASA’s Dawn mission. As a candidate ocean world, Ceres has the potential to provide new insights into prebiotic chemistry and habitability. This chapter reviews observations of carbon and organic matter on Ceres by Dawn and Earth-based telescopes. The observations are placed in context with astrophysical processes that produced organic matter in nebular materials from which Ceres grew. We consider mechanisms for destruction and synthesis of organic matter with changing hydrothermal conditions within Ceres’ interior. This is supported by studies of Ceres’ closest meteorite analogs, the aqueously altered carbonaceous chondrites, and halite crystals containing organic matter that may have formed within Ceres. Ultraviolet-, infrared-, and nuclear-spectroscopy show that Ceres’ surface contains a mixture of carbonates and organic matter in concentrations higher than the meteorite analogs. Ceres carbon-rich surface results from a combination of impacts and complex processes that occurred within Ceres’ interior, including low-temperature aqueous alteration, ice-rock fractionation, and modification of the accreted carbon species during serpentinization. This chapter reviews the current state of knowledge about carbon on Ceres, including sources of carbon and organics, parent body processes, remote sensing observations, and their interpretation.
The presence of ammonium on Ceres was first speculated based on telescopic data in the 1990s. Subsequent data from Dawn unambiguously confirmed the presence on Ceres’s surface. Ammonium has been identified within near-ubiquitous dark materials, and in salts in few localized bright faculae in the interiors of craters as we describe further in this chapter.
The presence of ammonium on Ceres is significant because it implies the availability of ammonia during its evolution. More broadly, understanding the processes that led to the presence of ammonium on Ceres provides important information on the aqueous environments in the early Solar System and the origins and dynamical histories of the large outer main belt asteroids. We briefly review the significance of ammonia and then describe what was known or speculated about ammoniated species on Ceres before Dawn’s arrival. We then review findings of the Dawn mission, in particular the detection and mapping of ammoniated phases by the Visible and Infrared spectrometer (VIR): which species host ammonia/ammonium, their abundance, and spatial distribution. We then discuss the potential origins and implications of ammonia, drawing on laboratory studies and modeling efforts. Finally, we summarize the key findings and the outstanding questions that remain for future investigation.
This study examined the influences of coated folic acid (CFA) and coated riboflavin (CRF) on bull performance, nutrients digestion and ruminal fermentation. Forty-eight Angus bulls based on a randomised block and 2 × 2 factorial design were assigned to four treatments. The CFA of 0 or 6 mg of folic acid/kg DM was supplemented in diets with CRF 0 or 60 mg riboflavin (RF)/kg DM. Supplementation of CRF in diets with CFA had greater increase in daily weight gain and feed efficiency than in diets without CFA. Supplementation with CFA or CRF enhanced digestibility of DM, organic matter, crude protein, neutral-detergent fibre and non-fibre carbohydrate. Ruminal pH and ammonia N content decreased and total volatile fatty acids concentration and acetate to propionate ratio elevated for CFA or CRF addition. Supplement of CFA or CRF increased the activities of fibrolytic enzymes and the numbers of total bacteria, protozoa, fungi, dominant fibrolytic bacteria and Prevotella ruminicola. The activities of α-amylase, protease and pectinase and the numbers of Butyrivibrio fibrisolvens and Ruminobacter amylophilus were increased by CFA but were unaffected by CRF. Blood concentration of folate elevated and homocysteine decreased for CFA addition. The CRF supplementation elevated blood concentrations of folate and RF. These findings suggested that CFA or CRF inclusion had facilitating effects on performance and ruminal fermentation, and combined addition of CFA and CRF had greater increase in performance than CFA or CRF addition alone in bulls.
To investigate the influences of cobalt (Co) and folic acid (FA) on growth performance and rumen fermentation, Holstein male calves (n 40) were randomly assigned to four groups according to their body weights. Cobalt sulphate at 0 or 0·11 mg Co/kg DM and FA at 0 or 7·2 mg/kg DM were used in a 2 × 2 factorial design. Average daily gain was elevated with FA or Co supplementation, but the elevation was greater for supplementing Co in diets without FA than with FA. Supplementing FA or Co increased DM intake and total-tract nutrient digestibility. Rumen pH was unaltered with FA but reduced with Co supplementation. Concentration of rumen total volatile fatty acids was elevated with FA or Co inclusion. Acetate percentage and acetate to propionate ratio were elevated with FA inclusion. Supplementing Co decreased acetate percentage and increased propionate percentage. Activities of xylanase and α-amylase and populations of total bacteria, fungi, protozoa, Ruminococcus albus, Fibrobacter succinogenes and Prevotella ruminicola increased with FA or Co inclusion. Activities of carboxymethyl-cellulase and pectinase increased with FA inclusion and population of methanogens decreased with Co addition. Blood folates increased and homocysteine decreased with FA inclusion. Blood glucose and vitamin B12 increased with Co addition. The data suggested that supplementing 0·11 mg Co/kg DM in diets containing 0·09 mg Co/kg DM increased growth performance and nutrient digestibility but had no improvement on the effects of FA addition in calves.
To evaluate the impacts of guanidinoacetic acid (GAA) and coated folic acid (CFA) on growth performance, nutrient digestion and hepatic gene expression, fifty-two Angus bulls were assigned to four groups in a 2 × 2 factor experimental design. The CFA of 0 or 6 mg/kg dietary DM folic acid was supplemented in diets with GAA of 0 (GAA−) or 0·6 g/kg DM (GAA+), respectively. Average daily gain (ADG), feed efficiency and hepatic creatine concentration increased with GAA or CFA addition, and the increased magnitude of these parameters was greater for addition of CFA in GAA− diets than in GAA+ diets. Blood creatine concentration increased with GAA or CFA addition, and greater increase was observed when CFA was supplemented in GAA+ diets than in GAA− diets. DM intake was unchanged, but rumen total SCFA concentration and digestibilities of DM, crude protein, neutral-detergent fibre and acid-detergent fibre increased with the addition of GAA or CFA. Acetate:propionate ratio was unaffected by GAA, but increased for CFA addition. Increase in blood concentrations of albumin, total protein and insulin-like growth factor-1 (IGF-1) was observed for GAA or CFA addition. Blood folate concentration was decreased by GAA, but increased with CFA addition. Hepatic expressions of IGF-1, phosphoinositide 3-kinase, protein kinase B, mammalian target of rapamycin and ribosomal protein S6 kinase increased with GAA or CFA addition. Results indicated that the combined supplementation of GAA and CFA could not cause ADG increase more when compared with GAA or CFA addition alone.
This study characterised the in vitro ileal fermentability of different substrates in the growing pig, adopted as an animal model for the adult human, and compared in vitro ileal and caecal fermentation in the pig. Substrates (arabinogalactan (AG), cellulose, fructo-oligosaccharide (FOS), inulin, mucin, citrus pectin and resistant starch) were fermented in vitro (ileal 2 h and caecal 24 h) with an ileal or caecal inoculum prepared from ileal or caecal digesta collected from growing pigs (n 5) fed a human-type diet for 15 d. The organic matter (OM) fermentability and production of organic acids were determined. In general, there was considerable in vitro ileal fermentation of fibre, and the substrates differed (P < 0·001) for both in vitro ileal and caecal OM fermentability and for organic acid production. Pectin had the greatest in vitro ileal OM fermentability (26 %) followed by AG, FOS and resistant starch (15 % on average), and cellulose, inulin and mucin (3 % on average). The fermentation of FOS, inulin and mucin was greater for in vitro caecal fermentation compared with the ileal counterpart (P ≤ 0·05). In general, the organic acid production was higher for in vitro caecal fermentation (P ≤ 0·05). For instance, the in vitro ileal acetic acid production represented 4–46 % of in vitro caecal production. Energy from fibre fermentation of 0·6–11 kJ/g substrate fermented could be expected in the ileum of the pig. In conclusion, substrates are fermented in both the ileum and caecum. The degree of fermentation varies among substrates, especially for in vitro ileal fermentation.