Responsive materials can transform their visual appearance in reaction to environmental stimuli. One example of such responsiveness involves the use of plant-based anthocyanins as pH-mediated allochroic pigments. Despite the increasing interest and applications of this pigment, its applications in urban contexts are very limited. By using pH-mediated colour change as a phenomenon to trial a colourimetric quantitative framework, this study seeks to bridge smart material design with colour science approaches to enable future scale-up applications. The colour values of anthocyanins immobilised in sodium alginate-based hydrogel discs and yarns were measured in response to varying pH values. The colourimetric measurements in CIELAB colour space provided a device for setting independent colour values that demonstrated a clear pattern across the pH range of 1–12. The colour difference (ΔE00) of mean colour values was perceivably different across the pH scale, with a minimum value of 2.7. Key variables of the process have been summarised, and their relationships have been discussed. Finally, a proof-of-concept small-scale textile prototype encompassing anthocyanin-laden hydrogel yarns was developed. The findings of this study contribute towards the integration of non-destructive means of colour measurement as a quantitative tool for biochemical process evaluation.