We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We derive estimates relating the values of a solution at any two points to the distance between the points for quasilinear parabolic equations on compact Riemannian manifolds under Ricci flow.
An inverse problem of determining unknown source parameter in a parabolic equation is considered. The variational iteration method (VIM) is presented to solve inverse problems. The solution gives good approximations by VIM. A numerical example shows that the VIM works effectively for an inverse problem.
In this paper, we consider the well-known Fattorini’s criterion for approximate controllability of infinite dimensional linear systems of type y′ = Ay + Bu. We precise the result proved by Fattorini in [H.O. Fattorini, SIAM J. Control 4 (1966) 686–694.] for bounded input B, in the case where B can be unbounded or in the case of finite-dimensional controls. More precisely, we prove that if Fattorini’s criterion is satisfied and if the set of geometric multiplicities of A is bounded then approximate controllability can be achieved with finite dimensional controls. An important consequence of this result consists in using the Fattorini’s criterion to obtain the feedback stabilizability of linear and nonlinear parabolic systems with feedback controls in a finite dimensional space. In particular, for systems described by partial differential equations, such a criterion reduces to a unique continuation theorem for a stationary system. We illustrate such a method by tackling some coupled Navier−Stokes type equations (MHD system and micropolar fluid system) and we sketch a systematic procedure relying on Fattorini’s criterion for checking stabilizability of such nonlinear systems. In that case, the unique continuation theorems rely on local Carleman inequalities for stationary Stokes type systems.
We consider the weighted $L_p$ solvability for divergence and nondivergence form parabolic equations with partially bounded mean oscillation (BMO) coefficients and certain positive potentials. As an application, global regularity in Morrey spaces for divergence form parabolic operators with partially BMO coefficients on a bounded domain is established.
The liner parabolic equation \hbox{$\frac{\pp y}{\pp t}-\frac12\,\D y+F\cdot\na y={\vec{1}}_{\calo_0}u$} with Neumann boundary condition on a convex open domain 𝒪 ⊂ ℝdwith smooth boundary is exactly null controllable on each finite interval if 𝒪0is an open subset of 𝒪which contains a suitable neighbourhood of the recession cone of \hbox{$\ov\calo$}. Here, F : ℝd → ℝd is a bounded, C1-continuous function, and F = ∇g, where g is convex and coercive.
The alternating direction implicit (ADI) method is a highly efficient technique for solving multi-dimensional time dependent initial-boundary value problems on rectangles. When the ADI technique is coupled with orthogonal spline collocation (OSC) for discretization in space we not only obtain the global solution efficiently but the discretization error with respect to space variables can be of an arbitrarily high order. In [2], we used a Crank Nicolson ADI OSC method for solving general nonlinear parabolic problems with Robin’s boundary conditions on rectangular polygons and demonstrated numerically the accuracy in various norms. A natural question that arises is: Does this method have an extension to non-rectangular regions? In this paper, we present a simple idea of how the ADI OSC technique can be extended to some such regions. Our approach depends on the transfer of Dirichlet boundary conditions in the solution of a two-point boundary value problem (TPBVP). We illustrate our idea for the solution of the heat equation on the unit disc using piecewise Hermite cubics.
In this paper, a new discontinuous Galerkin method is developed for the parabolic equation with jump coefficients satisfying the continuous flow condition. Theoretical analysis shows that this method is L2 stable. When the finite element space consists of interpolative polynomials of degrees k, the convergent rate of the semi-discrete discontinuous Galerkin scheme has an order of . Numerical examples for both 1-dimensional and 2-dimensional problems demonstrate the validity of the new method.
We discuss several new results on nonnegative approximate controllability for theone-dimensional Heat equation governed by either multiplicative or nonnegative additivecontrol, acting within a proper subset of the space domain at every moment of time. Ourmethods allow us to link these two types of controls to some extend. The main resultsinclude approximate controllability properties both for the static and mobile controlsupports.
An optimal control problem forsemilinear parabolic partial differential equations is considered.The control variable appears in the leading term of the equation.Necessary conditions for optimal controls are established by themethod of homogenizing spike variation. Results for problems withstate constraints are also stated.
In this paper we study Lavrentiev-type regularization concepts forlinear-quadratic parabolic control problems with pointwise state constraints. Inthe first part, we apply classical Lavrentiev regularization to a problem withdistributed control, whereas in the second part, a Lavrentiev-typeregularization method based on the adjoint operator is applied to boundarycontrol problems with state constraints in the whole domain. The analysis forboth classes of control problems is investigated and numerical tests areconducted. Moreover the method is compared with other numerical techniques.
We investigate the conditions on a hedger, who overestimates the (time- and level-dependent) volatility, to superreplicate a convex claim on several underlying assets. It is shown that the classic Black-Scholes model is the only model, within a large class, for which overestimation of the volatility yields the desired superreplication property. This is in contrast to the one-dimensional case, in which it is known that overestimation of the volatility with any time- and level-dependent model guarantees superreplication of convex claims.
We consider optimal distributed and boundary control problemsfor semilinear parabolic equations, where pointwise constraints onthe control and pointwise mixed control-state constraints of bottlenecktype are given. Our main result states the existence of regularLagrange multipliers for the state-constraints. Under naturalassumptions, we are able to show the existence of bounded and measurableLagrange multipliers. The method is based on results from the theoryof continuous linear programming problems.
In this paper, we consider the parabolic equation with anisotropic growth conditions, and obtain some criteria on boundedness of solutions, which generalize the corresponding results for the isotropic case.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.