We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we study a notion of HL-extension (HL standing for Herwig–Lascar) for a structure in a finite relational language
$\mathcal {L}$
. We give a description of all finite minimal HL-extensions of a given finite
$\mathcal {L}$
-structure. In addition, we study a group-theoretic property considered by Herwig–Lascar and show that it is closed under taking free products. We also introduce notions of coherent extensions and ultraextensive
$\mathcal {L}$
-structures and show that every countable
$\mathcal {L}$
-structure can be extended to a countable ultraextensive structure. Finally, it follows from our results that the automorphism group of any countable ultraextensive
$\mathcal {L}$
-structure has a dense locally finite subgroup.
Let $S|_{R}$ be a groupoid Galois extension with Galois groupoid $G$ such that $E_{g}^{G_{r(g)}}\subseteq C1_{g}$, for all $g\in G$, where $C$ is the centre of $S$, $G_{r(g)}$ is the principal group associated to $r(g)$ and $\{E_{g}\}_{g\in G}$ are the ideals of $S$. We give a complete characterisation in terms of a partial isomorphism groupoid for such extensions, showing that $G=\dot{\bigcup }_{g\in G}\text{Isom}_{R}(E_{g^{-1}},E_{g})$ if and only if $E_{g}$ is a connected commutative algebra or $E_{g}=E_{g}^{G_{r(g)}}\oplus E_{g}^{G_{r(g)}}$, where $E_{g}^{G_{r(g)}}$ is connected, for all $g\in G$.
We prove that it is relatively consistent with ZF + CH that there exist two models of cardinality $\aleph _2 $ such that the second player has a winning strategy in the Ehrenfeucht–Fraïssé-game of length ω1 but there is no σ-closed back-and-forth set for the two models. If CH fails, no such pairs of models exist.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.