As the most abundant engineered material on Earth, concrete is essential to the physical infrastructure of all modern societies. There are no known materials that can replace concrete in terms of cost and availability. There are, however, environmental concerns, including the significant CO2 emissions associated with cement production, which create new incentives for university–industry collaboration to address concrete sustainability. Herein, we examine one aspect of this challenge—the translation of scientific understanding at the microscale into industrial innovation at the macroscale—by seeking improvements in cement-paste processing, performance, and sustainability through control of the mechanisms that govern microstructure development. Specifically, we consider modeling, simulation, and experimental advances in fracture, dissolution, precipitation, and hydration of cement paste precursors, as well as properties of the hardened cement paste within concrete. The aim of such studies is to optimize the chemical reactivity, mechanical performance, and other physical properties of cement paste to enable more sustainable processing routes for this ubiquitous material.