Late Cenozoic basalts of the Bazman volcanic field, Makran volcanic arc of southern Iran, contain two types of plagioclase feldspar phenocrysts with significant textural and compositional differences. The most common type is rather homogeneous with only weak zoning and maximum An content of 83 mol.%. The less common type of phenocryst exhibits complex zoning and, other than rims, is close in composition and similar in texture to those of associated andesites. This type of plagioclase phenocryst is characterized by an engulfed core with oscillatory zoning, which is overgrown by sieve-textured, moderately zoned mantle, and a relatively narrow rim. In both rock types, the An content of the core is between 40 and 63 mol.% with abrupt fluctuations. No significant correlation between An content and MgO, FeO, SrO and BaO is apparent in the core of phenocrysts in basalts. Anorthite content of the core of phenocrysts in andesites inversely correlates with SrO and BaO. The mantle of plagioclase phenocrysts in both rock types is characterized by sharp increases of An (up to 41 mol.%), MgO, and FeO, in the contact with the core. Anorthite correlates positively with MgO and FeO in the mantle, but correlation between An and SrO and BaO is not evident. It is assumed that plagioclase phenocrysts originally crystallizing from the host andesitic magma were interrupted by mixing with a hotter, juvenile basaltic magma. The resulting changes in temperature, composition, and H2O content of the surrounding melt caused compositional zonation, and the development of resorption in the cores and sieve texture in the mantles. As the An contents of the rims of the phenocrysts resemble the average An content of the groundmass plagioclases in both rock types, it is thought that the two involved magmas gained their independent physical identity before the formation of compositionally-distinct rims of plagioclase phenocrysts.