A first assessment of paralogy in non-reducing polyketide synthases of Parmeliaceae is presented. Primers which are specific to the keto-acyl synthase domain were used to amplify gene fragments of putative non-reducing polyketide synthases from various representatives of the family. The corresponding sequences were analysed together with a selection of known polyketide synthase genes from other fungi, including lichenized fungi. The results suggest that genes from Parmeliaceae represent at least 6 paralogs. Their different positions in the tree partly correlate with the variable presence of spliceosomal introns at particular positions in the gene fragments. Because only one paralog could be unambiguously detected in each species by direct sequencing of PCR products with this approach, we tested the applicability of clade-specific primers, designed by using orthologous signature sequences. With these primers more paralogs could be detected from the same DNA extract in a number of species, but certain paralogs were consistently not amplified in these species. The paralog-specific primer approach can potentially be used for a rapid screening of PKS genes from a broader range of lichen fungi.