Currently, most of the studies on unmanned aerial vehicle (UAV) automatic landing systems mainly depend on image information to determine the landing location. However, the system requires a camera, a gimbal system and a separate image-processing device, which increases the weight and power consumption of the UAV, resulting in a shorter flight time. In addition, a large amount of computation and slow reaction speed can cause the camera to miss a proper landing moment. To solve these problems, in this study, the moving direction and relative distance between an object and the automatic landing system were measured using a receive signal strength indicator of the radio-frequency (RF) signal. To improve the movement direction and relative distance estimation accuracy, the noise in the RF signal was minimised using a low pass filter and moving average filter. Based on the filtered RF signal, the acceleration of the multicopter to reach the object was estimated by adopting the proportional navigation algorithm. The performance of the proposed algorithm for precise landing on a moving vehicle was demonstrated through experiments.