We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The book starts out with a motivating chapter to answer the question: Why is it worthwhile to develop system theory? To do so, we jump fearlessly in the very center of our methods, using a simple and straight example in optimization: optimal tracking. Although optimization is not our leading subject– which is system theory– it provides for one of the main application areas, namely the optimization of the performance of a dynamical system in a time-variant environment (for example, driving a car or sending a rocket to the moon). The chapter presents a recursive matrix algebra approach to the optimization problem, known as dynamic programming. Optimal tracking is based on a powerful principle called “dynamic programming,” which lies at the very basis of what ”dynamical” means.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.