We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
With regard to current neurobiological theories, the aim of our study was to examine possible alterations of temporal and frontal lobe volume in panic disorder (PD).
Method
Seventeen in-patients with PD and a group of healthy control subjects (HC) matched for age and gender were investigated by quantitative volumetric magnetic resonance imaging (MRI). Structures of interest were: the temporal lobe, the amygdala–hippocampus complex (AHC) and the frontal lobe. In addition, a voxel-based morphometry (VBM) analysis implemented in Statistical Parametric Mapping 5 (SPM5) was used for a more detailed assessment of possible volume alterations. Modulated grey matter (GM) images were used to test our a priori hypotheses and to present the volumetric results.
Results
Quantitative volumetric MRI revealed a bilateral reduction in temporal lobe volume in patients with PD compared to HC subjects. The AHC was normal. The right frontal lobe volume was also decreased. Using VBM we detected a significant GM volume reduction in the right middle temporal gyrus [Brodmann area (BA) 21] in patients with PD. In addition, there was a reduction in GM volume in the medial part of the orbitofrontal cortex (BA 11).
Conclusions
Our results of reduced temporal and frontal lobe volume in PD are in agreement with prior studies. By using a recent VBM approach we were able to assess the abnormalities more precisely. The location of GM volume reduction in the right middle temporal gyrus and medial orbitofrontal cortex lends further support to recent aetiological models of PD.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.