We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given an algebra and a finite group acting on it via automorphisms, a natural object of study is the associated skew group algebra. In this article, we study the relationship between quasi-hereditary structures on the original algebra and on the corresponding skew group algebra. Assuming a natural compatibility condition on the partial order, we show that the skew group algebra is quasi-hereditary if and only if the original algebra is. Moreover, we show that in this setting an exact Borel subalgebra of the original algebra which is invariant as a set under the group action gives rise to an exact Borel subalgebra of the skew group algebra and that under this construction, properties such as normality and regularity of the exact Borel subalgebra are preserved.
Given a quasi-hereditary algebra , we present conditions which guarantee that the algebra obtained by grading by its radical filtration is Koszul and at the same time inherits the quasi-hereditary property and other good Lie-theoretic properties that might possess. The method involves working with a pair consisting of a quasi-hereditary algebra and a (positively) graded subalgebra . The algebra arises as a quotient of by a defining ideal of . Along the way, we also show that the standard (Weyl) modules for have a structure as graded modules for . These results are applied to obtain new information about the finite dimensional algebras (e.g., the -Schur algebras) which arise as quotients of quantum enveloping algebras. Further applications, perhaps the most penetrating, yield results for the finite dimensional algebras associated with semisimple algebraic groups in positive characteristic . These results require, at least at present, considerable restrictions on the size of .
The partition algebra P(q) is a generalization both of the Brauer algebra and the Temperley–Lieb algebra for q-state n-site Potts models, underpining their transfer matrix formulation on the arbitrary transverse lattices. We prove that for arbitrary field k and any element q∈ k the partition algebra P(q) is always cellular in the sense of Graham and Lehrer. Thus the representation theory of P(q) can be determined by applying the developed general representation theory on cellular algebras and symmetric groups. Our result also provides an explicit structure of P(q) for arbitrary field and implies the well-known fact that the Brauer algebra D(q) and the Temperley–Lieb algebra TL(q) are cellular.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.