We use the random-product technique from [5] to study both the steady-state and time-dependent behavior of a Markovian reentrant-line model, which is a generalization of the preemptive reentrant-line model studied in the work of Adan and Weiss [2]. Our results/observations yield additional insight into why the stationary distribution of the reentrant-line model from [2] exhibits an almost-geometric product-form structure: indeed, our generalized reentrant-line model, when stable, admits a stationary distribution with a similar product-form representation as well. Not only that, the Laplace transforms of the transition functions of our reentrant-line model also have a product-form structure if it is further assumed that both Buffers 2 and 3 are empty at time zero.