Intersection growth concerns the asymptotic behaviour of the index of the intersection of all subgroups of a group that have index at most n. In this paper we show that the intersection growth of some groups may not be a nicely behaved function by showing the following seemingly contradictory results: (a) for any group G the intersection growth function iG(n) is super linear infinitely often, and (b) for any non-decreasing unbounded function f there exists a group G such that the graph of iG is below the one of f infinitely often.