We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Stroke outcomes research requires risk-adjustment for stroke severity, but this measure is often unavailable. The Passive Surveillance Stroke SeVerity (PaSSV) score is an administrative data-based stroke severity measure that was developed in Ontario, Canada. We assessed the geographical and temporal external validity of PaSSV in British Columbia (BC), Nova Scotia (NS) and Ontario, Canada.
Methods:
We used linked administrative data in each province to identify adult patients with ischemic stroke or intracerebral hemorrhage between 2014-2019 and calculated their PaSSV score. We used Cox proportional hazards models to evaluate the association between the PaSSV score and the hazard of death over 30 days and the cause-specific hazard of admission to long-term care over 365 days. We assessed the models’ discriminative values using Uno’s c-statistic, comparing models with versus without PaSSV.
Results:
We included 86,142 patients (n = 18,387 in BC, n = 65,082 in Ontario, n = 2,673 in NS). The mean and median PaSSV were similar across provinces. A higher PaSSV score, representing lower stroke severity, was associated with a lower hazard of death (hazard ratio and 95% confidence intervals 0.70 [0.68, 0.71] in BC, 0.69 [0.68, 0.69] in Ontario, 0.72 [0.68, 0.75] in NS) and admission to long-term care (0.77 [0.76, 0.79] in BC, 0.84 [0.83, 0.85] in Ontario, 0.86 [0.79, 0.93] in NS). Including PaSSV in the multivariable models increased the c-statistics compared to models without this variable.
Conclusion:
PaSSV has geographical and temporal validity, making it useful for risk-adjustment in stroke outcomes research, including in multi-jurisdiction analyses.
This chapter focuses on the mechanics of collecting and analyzing outcome data. It reviews the foundational functions of data management as they pertain to measuring outcomes. Then it discusses different data collection mechanisms such as using spreadsheets, REDCap, registries, and electronic health records. Additional considerations for data collection are outlined such as establishing the measurement timeline and ethical and legal considerations when establishing an outcome measurement program. This chapter also discusses the steps of integrating and validating data as well as extracting and analyzing outcome data. The primary audience for this chapter is individual clinicians who want to start measuring outcomes in their clinical practice.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.