A spring-assisted modular and reconfigurable robot (SA-MRR) has been recently developed at our laboratory to reinforce its performance and enable safe and dexterous operation in human–robot environments. Multiple working mode (MWM) control enables each SA-MRR joint module to switch independently between working in a primary actuation mode and a secondary, spring-assisted mode that may improve task-specific energy performance measures and safety in a variety of manipulation tasks. The spring-assisted mode is characterized by synergy of spring and motor energy and may be summoned to offset motor energy demands or to safeguard a reconfigurable set of secondary joint limits. In this research work, two spring-assisted working mode strategies are proposed, and their characteristics have been investigated for SA-MRR actuation energy advantages while safe robot segregation in collaboration tasks is maintained. One MWM strategy has been designed to safeguard task-specific joint limits and is able to decrease motor energy consumption in some tasks. Another MWM strategy has been designed for energy efficiency and was able to reduce motor energy per cycle by
$ \text{72}$
% in a simulated manipulation task while maintaining spatial safety constraints. Numerical simulations have demonstrated the effectiveness of the proposed spring-assisted working mode strategies for energy-aware safe manipulation applications.