A comparative study of three main igneous rock associations that plot in the K2O–SiO2 diagram shoshonite field: shoshonite series absarokites–shoshonites–banakites (henceforth referred to as shoshonites s.l.), vaugnerites, and potassic lamprophyres, reveals that similarities between the associations are superficial. Vaugnerites and lamprophyres are more magnesian, richer in large ion lithophile and high field strength elements and have higher light rare earth/heavy rare earth ratios than shoshonites. Furthermore, shoshonites have low radiogenic heat production, typical of subduction-related rocks, but most vaugnerites and some lamprophyres are highly radioactive. Relative to bulk-Earth, shoshonites have depleted, asthenospheric mantle-like Sr and Nd isotope signatures, whereas vaugnerites and potassic lamprophyres have enriched, crust or lithospheric mantle-like compositions. Though vaugnerites and some lamprophyres show evidence of crustal contamination, the contaminated magma was not originally shoshonitic. Their composition is consistent with derivation from a metasomatised upper mantle source enriched long before melting, thus precluding an active subduction setting. In conclusion, the term shoshonite, implying late-stage arc magmas, cannot be applied to a rock series simply because it plots into the K2O–SiO2 diagram shoshonite field. Shoshonites with a subduction-related source may, however, be identified by discriminant function analysis.