This paper is concerned with a nonlocal reaction–diffusion system with double free boundaries and two time delays. The free boundary problem describes the evolution of faecally–orally transmitted diseases. We first show the well-posedness of global solution, and then establish the monotonicity and asymptotic property of basic reproduction number for the epidemic model without delays, which is defined by spectral radius of the next infection operator. By introducing the generalized principal eigenvalue defined in general domain, we obtain an upper bound of the limit value of basic reproduction number. We discuss the spreading and vanishing phenomena in terms of the basic production number. By employing the perturbed approximation method and monotone iteration method, we establish the existence, uniqueness and monotonicity of solution to semi-wave problem. When spreading occurs, we determine the asymptotic spreading speeds of free boundaries by constructing suitable upper and lower solutions from the semi-wave solutions. Moreover, spreading speeds for partially degenerate diffusion case are provided in a similar way.