We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study aimed to explore Chinese people’s attitudes to the official application of TCM in coronavirus disease 2019 (COVID-19) treatment.
Methods:
We collected data referring to TCM on Weibo from 0:00 on January 24, 2020, to 23:59:59 on March 31, 2020 (Beijing time). In addition, this study used DLUT-Emotion ontology to analyze the sentiment orientation and emotions of selected data and then conducted a text analysis.
Results:
According to DLUT-Emotion ontology, we examined 3 sentiment orientations of 215,565 valid Weibo posts. Among them, 25,025 posts were judged as positive emotions, accounting for approximately 12%; 22,362 were regarded as negative emotions, accounting for approximately 10%; and 168,178 were judged as neutral emotions, accounting for approximately 78%. Results indicate that the words judged as “Good” have the highest frequency, and words marked as “Happy” have increased over time. The word frequency of “Fear” and “Sadness” showed a significant downward trend.
Conclusion:
Weibo users have a relatively positive attitude to the TCM in the COVID-19 treatment in general. Results of text analysis show that data with negative emotions is essentially an expression of public opinions to supporting TCM or not. Texts of “Fear” and “Sadness” do not reflect users’ negative attitudes to TCM.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.