We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In Chapter 3, we introduced SL(2,Z) as the automorphism group of a two-dimensional lattice with an arbitrary modulus. For every value of the modulus, the lattice also possesses a ring of endomorphisms which multiply the lattice by a nonvanishing integer to produce a sublattice of the original lattice. Multiplying the lattice by an arbitrary complex number gives a lattice that will generally not be a sublattice of the original lattice. However, for special values of the modulus, referred to as singular moduli, and associated special values of the complex-valued multiplying factor, the lattice obtained by multiplication will be a sublattice of the original lattice and the ring of endomorphisms will be enlarged. This phenomenon is referred to as complex multiplication. From a mathematics standpoint, various modular forms take on special values at singular moduli, as illustrated by the fact that the j-function is an algebraic integer. From a physics standpoint, the enlargement of the endomorphism ring has arithmetic consequences in conformal field theory, as illustrated by the fact that conformal field theories corresponding to toroidal compactifications at singular moduli are rational conformal field theories as will be discussed in Chapter 13.
We show that for every finite set of prime numbers $S$, there are at most finitely many singular moduli that are $S$-units. The key new ingredient is that for every prime number $p$, singular moduli are $p$-adically disperse. We prove analogous results for the Weber modular functions, the $\lambda$-invariants and the McKay–Thompson series associated with the elements of the monster group. Finally, we also obtain that a modular function that specializes to infinitely many algebraic units at quadratic imaginary numbers must be a weak modular unit.
In this note, we will apply the results of Gross–Zagier, Gross–Kohnen–Zagier and their generalizations to give a short proof that the differences of singular moduli are not units. As a consequence, we obtain a result on isogenies between reductions of CM elliptic curves.
We show that two distinct singular moduli $j(\unicode[STIX]{x1D70F}),j(\unicode[STIX]{x1D70F}^{\prime })$, such that for some positive integers $m$ and $n$ the numbers $1,j(\unicode[STIX]{x1D70F})^{m}$ and $j(\unicode[STIX]{x1D70F}^{\prime })^{n}$ are linearly dependent over $\mathbb{Q}$, generate the same number field of degree at most two. This completes a result of Riffaut [‘Equations with powers of singular moduli’, Int. J. Number Theory, to appear], who proved the above theorem except for two explicit pairs of exceptions consisting of numbers of degree three. The purpose of this article is to treat these two remaining cases.
We investigate divisibility properties of the traces and Hecke traces of singular moduli. In particular we prove that, if p is prime, these traces satisfy many congruences modulo powers of p which are described in terms of the factorization of p in imaginary quadratic fields. We also study generalizations of Lehner's classical congruences $j(z)| U_p\equiv 744 \pmod p$ (where $p\leq 11$ and j(z) is the usual modular invariant), and we investigate connections between class polynomials and supersingular polynomials in characteristic p.
We investigate the arithmetic and combinatorial significance of the values of the polynomials jn(x) defined by the q-expansion \[\sum_{n=0}^{\infty}j_n(x)q^n:=\frac{E_4(z)^2E_6(z)}{\Delta(z)}\cdot\frac{1}{j(z)-x}.\]
They allow us to provide an explicit description of the action of the Ramanujan Theta-operator on modular forms. There are a substantial number of consequences for this result. We obtain recursive formulas for coefficients of modular forms, formulas for the infinite product exponents of modular forms, and new p-adic class number formulas.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.