We define invariants of the blow-Nash equivalence of Nash function germs, in a similar way to the motivic zeta functions of Denef and Loeser. As a key ingredient, we extend the virtual Betti numbers, which were known for real algebraic sets, to a generalized Euler characteristic for projective constructible arc-symmetric sets. Actually we prove more: the virtual Betti numbers are not only algebraic invariants, but also Nash invariants of arc-symmetric sets. Our zeta functions enable one to distinguish the blow-Nash equivalence classes of Brieskorn polynomials of two variables. We prove moreover that there are no moduli for the blow-Nash equivalence in the case of an algebraic family with isolated singularities.