We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate the existence and branching patterns of wave trains in the mass-in-mass (MiM) lattice, which is a variant of the Fermi–Pasta–Ulam (FPU) lattice. In contrast to FPU lattice, we have to solve coupled advance-delay differential equations, which are reduced to a finite-dimensional bifurcation equation with an inherited Hamiltonian structure by applying a Lyapunov–Schmidt reduction and invariant theory. We establish a link between the MiM lattice and the monatomic FPU lattice. That is, the monochromatic and bichromatic wave trains persist near $\mu =0$ in the nonresonance case and in the resonance case $p:q$ where $q$ is not an integer multiple of $p$. Furthermore, we obtain the multiplicity of bichromatic wave trains in $p:q$ resonance where $q$ is an integer multiple of $p$, based on the singular theorem.
The significance of singularities in the design and control of robot manipulators is well known, and there is an extensive literature on the determination and analysis of singularities for a wide variety of serial and parallel manipulators—indeed such an analysis is an essential part of manipulator design. Singularity theory provides methodologies for a deeper analysis with the aim of classifying singularities, providing local models and local and global invariants. This paper surveys applications of singularity-theoretic methods in robot kinematics and presents some new results.
In singularity theory, J. Damon gave elegant versions of the unfolding
and determinacy theorems for geometric subgroups of . and . In this work, we propose a unified treatment of the smooth stability of germs and the structural stability of versai unfoldings for a large class of such subgroups.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.