We study the properties of the multivariate skew normal distribution as an approximation to the distribution of the sum of n independent, identically distributed random vectors. More precisely, we establish conditions ensuring that the uniform distance between the two distribution functions converges to 0 at a rate of n-2/3. The advantage over the corresponding normal approximation is particularly relevant when the summands are skewed and n is small, as illustrated for the special case of exponentially distributed random variables. Applications to some well-known multivariate distributions are also discussed.