The land cover of the Sanjiang Plain has changed dramatically since the 1950s. Although previous studies have analysed its spatiotemporal dynamics at long time intervals, a near real-time and accurate representation of the interannual evolution of cropping patterns in this region is of far-reaching importance for rationally allocating agricultural resources and ensuring food security. Based on the 30 m and 10 m land cover datasets in 2015 and 2017–2019, the current study used Landsat-8 satellite data in 2014, 2016 and 2020 to identify paddy rice and dryland crops using a decision tree classification approach and constructed the annual cropland datasets of the Sanjiang Plain from 2014 to 2020. The results show that the overall classification accuracies of crop datasets exceeded 95%, and the Kappa coefficients were higher than 0.92. The average annual accuracies of users and producers were 93% and 94% for rice fields and 97% and 95% for dryland crops, respectively. During the 7 years, the total area of paddy fields and dryland crops decreased by 5% and 8%. However, with minor positive and negative variation between years. 24.2% of paddy rice and 42% of dryland crops has been cultivated under 4 years. The centres of gravity for both crops mainly aggregated in the central counties with the migration direction and magnitude varying interannually. The current study emphasizes the importance of establishing annual high-resolution crop datasets to track the detailed spatio-temporal trajectories of cropping patterns that are essential to support sustainable cropland management and agricultural development.