Seeds are crucial for plant reproduction, dispersal and agriculture. Seed quality and vigour greatly impact crop production by enabling rapid and uniform germination under various environmental conditions. This leads to healthy seedlings that can withstand both biotic and abiotic stresses, which are particularly important in the context of the accentuation of global climate change. Upon imbibition during germination sensu stricto, seeds release exudates, complex mixtures of organic and inorganic molecules, into the microenvironment surrounding them, known as the spermosphere. These exudates play a pivotal role in seedling development and overall plant fitness by influencing microbial selection, growth and interactions in the spermosphere, ultimately shaping the plant's microbiome. Proteins such as enzymes with protection properties have previously been demonstrated to be released by the seeds in their exudates. However, limited information is available pertaining to peptides in seed exudates. Here, we developed an experimental protocol to extract and identify peptides in the spermosphere of germinating common bean seeds. We showed that our methodology was successful in identifying a broad spectrum of peptides and that extraction solvent choice impacts peptide identification both qualitatively and quantitatively. We also show the possibility of using online prediction tools to predict the properties of identified peptides based on their amino acid sequence. We propose that this approach may be used to identify potential molecules that could be used as candidates for developing strategies to enhance seed quality and improve crop productivity.