We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study derived categories of Gorenstein varieties $X$ and $X^+$ connected by a flop. We assume that the flopping contractions $f\colon X\to Y$, $f^+ \colon X^+ \to Y$ have fibers of dimension bounded by one and $Y$ has canonical hypersurface singularities of multiplicity two. We consider the fiber product $W=X\times _YX^+$ with projections $p\colon W\to X$, $p^+\colon W\to X^+$ and prove that the flop functors $F = Rp^+_*Lp^* \colon {\mathcal {D}}^b(X) \to {\mathcal {D}}^b(X^+)$, $F^+= Rp_*L{p^+}^* \colon {\mathcal {D}}^b(X^+) \to {\mathcal {D}}^b(X)$ are equivalences, inverse to those constructed by Van den Bergh. The composite $F^+ \circ F \colon {\mathcal {D}}^b(X) \to {\mathcal {D}}^b(X)$ is a non-trivial auto-equivalence. When variety $Y$ is affine, we present $F^+ \circ F$ as the spherical cotwist of a spherical couple $(\Psi ^*,\Psi )$ which involves a spherical functor $\Psi$ constructed by deriving the inclusion of the null category $\mathscr {A}_f$ of sheaves ${\mathcal {F}} \in \mathop {{\rm Coh}}\nolimits (X)$ with $Rf_*({\mathcal {F}} )=0$ into $\mathop {{\rm Coh}}\nolimits (X)$. We construct a spherical pair (${\mathcal {D}}^b(X)$, ${\mathcal {D}}^b(X^+)$) in the quotient ${\mathcal {D}}^b(W) /{\mathcal {K}}^b$, where ${\mathcal {K}}^b$ is the common kernel of the derived push-forwards for the projections to $X$ and $X^+$, thus implementing in geometric terms a schober for the flop. A technical innovation of the paper is the $L^1f^*f_*$ vanishing for Van den Bergh's projective generator. We construct a projective generator in the null category and prove that its endomorphism algebra is the contraction algebra.
We introduce a new class of autoequivalences that act on the derived categories of certain vector bundles over Grassmannians. These autoequivalences arise from Grassmannian flops: they generalize Seidel–Thomas spherical twists, which can be seen as arising from standard flops. We first give a simple algebraic construction, which is well suited to explicit computations. We then give a geometric construction using spherical functors which we prove is equivalent.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.