Fluid flow phenomena are very closely related to the casting quality and surface finish of the cast part. In addition, the good quality of the casting product can be achieved by using an optimum gating system design. In this work, a vortex well, which is one of the important components of gating system design, is utilized in order to demonstrate its effectiveness in improving the mechanical and microstructure properties of the cast part. An X-ray radiography test was performed in order to investigate the porosity distribution in castings with different vortex well dimensions. The scatter of flexure strength results was quantified by Weibull statistics. Microstructure analysis was conducted by using a scanning electron microscope (SEM) to examine the microstructure of selected casting specimens produced from the vortex well design. By optimizing the vortex well design, porosity inside the casting was significantly reduced, while the mechanical strength and reliability of aluminum casting were further enhanced.