We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Just as the concept of stress gives us a measure of force distributions in a deformable body, the concept of strain describes the distribution of deformations locally at every point within the body. In this chapter we will define strains and describe how strains change with directions and with the choice of coordinates, as was done with stresses. Strains will also be related to the displacements of the deformable body. It will be shown that strains must satisfy a set of compatibility equations at every point in a body to ensure that they represent a well-behaved deformation. Since the strains often found in practice are quite small, this book will only consider problems for small strains.
The representation of the stress and strain tensors and the formulation of the boundary-value problem of linear elasticity in cylindrical coordinates is considered. The Cauchy equations of equilibrium, expressed in terms of stresses, the strain–displacement relations, the compatibility equations, the generalized Hooke's law, and the Navier equations of equilibrium, expressed in terms of displacements, are all cast in cylindrical coordinates. The axisymmetric boundary-value problem of a pressurized hollow cylinder with either open or closed ends is formulated and solved. The results are used to obtain the elastic fields for a pressurized circular hole in an infinite medium, and to solve a cylindrical shrink-fit problem. A pressurized hollow sphere and a spherical shrink-fit problem are also considered to illustrate the solution procedure in the case of problems with spherical symmetry.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.