We determine the distributions of some random variables related to a simple model of an epidemic with contact tracing and cluster isolation. This enables us to apply general limit theorems for super-critical Crump–Mode–Jagers branching processes. Notably, we compute explicitly the asymptotic proportion of isolated clusters with a given size amongst all isolated clusters, conditionally on survival of the epidemic. Somewhat surprisingly, the latter differs from the distribution of the size of a typical cluster at the time of its detection, and we explain the reasons behind this seeming paradox.