Distance measurements are useful tools in stochastic geometry. For a Boolean model Z in ℝd, the classical contact distribution functions allow the estimation of important geometric parameters of Z. In two previous papers, several types of generalized contact distributions have been investigated and applied to stationary and nonstationary Boolean models. Here, we consider random sets Z which are generated as the union sets of Poisson processes X of k-flats, k ∈ {0, …, d-1}, and study distances from a fixed point or a fixed convex body to Z. In addition, we also consider the distances from a given flat or a flag consisting of flats to the individual members of X and investigate the associated process of nearest points in the flats of X. In particular, we discuss to which extent the directional distribution of X is determined by this point process. Some of our results are presented for more general stationary processes of flats.