This study emphasizes the importance of automatic synthetic data generation in data-driven applications, especially in the development of a 3D computer vision system for engineering contexts such as brownfield factory projects, where no data is readily available. Key points: (1) A successful integration of a synthetic data generator with the S3DIS dataset, leading to a significant enhancement in object detection of previous classes and enabling recognition of new ones; (2) A proposal for a CAD-based configurator for efficient and customizable scene reconstruction from LiDAR scanner point clouds.