We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider an SIR (susceptible $\to$ infective $\to$ recovered) epidemic in a closed population of size n, in which infection spreads via mixing events, comprising individuals chosen uniformly at random from the population, which occur at the points of a Poisson process. This contrasts sharply with most epidemic models, in which infection is spread purely by pairwise interaction. A sequence of epidemic processes, indexed by n, and an approximating branching process are constructed on a common probability space via embedded random walks. We show that under suitable conditions the process of infectives in the epidemic process converges almost surely to the branching process. This leads to a threshold theorem for the epidemic process, where a major outbreak is defined as one that infects at least $\log n$ individuals. We show further that there exists $\delta \gt 0$, depending on the model parameters, such that the probability that a major outbreak has size at least $\delta n$ tends to one as $n \to \infty$.
We consider a stochastic SIR (susceptible → infective → removed) epidemic model with several types of individuals. Infectious individuals can make infectious contacts on two levels, within their own ‘household’ and with their neighbours in a random graph representing additional social contacts. This random graph is an extension of the well-known configuration model to allow for several types of individuals. We give a strong approximation theorem which leads to a threshold theorem for the epidemic model and a method for calculating the probability of a major outbreak given few initial infectives. A multitype analogue of a theorem of Ball, Sirl and Trapman (2009) heuristically motivates a method for calculating the expected size of such a major outbreak. We also consider vaccination and give some short numerical illustrations of our results.
In this paper we consider a stochastic SIR (susceptible→infective→removed) epidemic model in which individuals may make infectious contacts in two ways, both within ‘households’ (which for ease of exposition are assumed to have equal size) and along the edges of a random graph describing additional social contacts. Heuristically motivated branching process approximations are described, which lead to a threshold parameter for the model and methods for calculating the probability of a major outbreak, given few initial infectives, and the expected proportion of the population who are ultimately infected by such a major outbreak. These approximate results are shown to be exact as the number of households tends to infinity by proving associated limit theorems. Moreover, simulation studies indicate that these asymptotic results provide good approximations for modestly sized finite populations. The extension to unequal-sized households is discussed briefly.
We consider a stochastic model for the spread of an SIR (susceptible → infective → removed) epidemic among a closed, finite population that contains several types of individuals and is partitioned into households. The infection rate between two individuals depends on the types of the transmitting and receiving individuals and also on whether the infection is local (i.e., within a household) or global (i.e., between households). The exact distribution of the final outcome of the epidemic is outlined. A branching process approximation for the early stages of the epidemic is described and made fully rigorous, by considering a sequence of epidemics in which the number of households tends to infinity and using a coupling argument. This leads to a threshold theorem for the epidemic model. A central limit theorem for the final outcome of epidemics which take off is derived, by exploiting an embedding representation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.