We study Toeplitz operators on the space of all real analytic functions on the real line and the space of all holomorphic functions on finitely connected domains in the complex plane. In both cases, we show that the space of all Toeplitz operators is isomorphic, when equipped with the topology of uniform convergence on bounded sets, with the symbol algebra. This is surprising in view of our previous results, since we showed that the symbol map is not continuous in this topology on the algebra generated by all Toeplitz operators. We also show that in the case of the Fréchet space of all holomorphic functions on a finitely connected domain in the complex plane, the commutator ideal is dense in the algebra generated by all Toeplitz operators in the topology of uniform convergence on bounded sets.