Very high cycle bending fatigue behaviors of FV520B steel under fretting wear were studied by the ultrasonic fatigue technique. The specimen system for ultrasonic bending testing was designed and the stress distribution of fatigue specimen was obtained by finite element method. The microstructure of FV520B steel was characterized by means of optical microscope, transmission electron microscope, and energy-dispersive spectroscope. The P–S–N curve was drawn based on fatigue data. The micromorphology characteristics of fretting wear surface and fracture surface for fatigue specimen were observed. The results indicate that the microstructure of FV520B steel is mainly composed of lath martensite, ferrite, and precipitation particles, with some randomly distributed internal inclusions. The P–S–N curve shows that there exists no “conventional fatigue limit” and the fatigue life decreases continuously with the increase of applied stress Smax. Most of fatigue cracks are observed on fractography and initiate from the overlap region of fretting wear zone and stress concentration zone. The fracture failure for tested specimen is ascribed to fretting wear and bending vibration fatigue.