Zhou et al. [‘On weakly non-decreasable quasiconformal mappings’, J. Math. Anal. Appl.386 (2012), 842–847] proved that, in a Teichmüller equivalence class, there exists an extremal quasiconformal mapping with a weakly nondecreasable dilatation. They asked whether a weakly nondecreasable dilatation is a nondecreasable dilatation. The aim of this paper is to give a negative answer to their problem. We also construct a Teichmüller class such that it contains an infinite number of weakly nondecreasable extremal representatives, only one of which is nondecreasable.