We study the dynamic assignment of cross-trained workers in serial production lines characterized by stochastic process times and inventory buffers between stations. Throughput maximization is the objective. Each worker is trained for a subset of tasks, where emphasis is placed on systems with each worker trained for a zone of stations with stations near the zone boundaries being served (shared) by one or more other workers as well. Using sample path comparisons, we identify structural properties of optimal worker allocation policies. We identify when (i) a worker can prioritize the job in the most downstream station (last-buffer-first-served), and (ii) only the downstream (as opposed to upstream) server should serve a single task.