Published online by Cambridge University Press: 05 May 2023
We present orbit classification schemes for use as fast metrics for fusion alpha particle losses implemented in the symplectic guiding-centre code SIMPLE. Two variants respectively based on conservation of the parallel adiabatic invariant, and topology of footprints in Poincaré sections are introduced. Like an existing approach based on the Minkowski fractal dimension, those methods estimate whether a guiding-centre orbit is regular and therefore expected to be confined for infinite time in the collisionless case, or chaotic, which might lead to its loss. Compared with the existing approach, the required orbit tracing time for the novel classifiers is shorter by at least an order of magnitude. This enables massive sampling of orbits across the whole phase space to identify regular and chaotic regions for the purpose stellarator optimization. Based on conservation of the perpendicular invariant, we demonstrate how extended regular regions may act as radial barriers for orbits from the chaotic regions on the radially inboard side. We propose to use a quantified version of this property as a new metric for collisionless fusion alpha losses. As pitch-angle scattering becomes only relevant after alphas have already deposited a significant fraction of their energy, such a metric remains useful also for the case with collisions. This is illustrated by comparison with collisional loss computations. Results are presented for applications to two quasi-isodynamic configurations, a quasi-helical configuration and two quasi-axisymmetric configurations. In addition, the Hamiltonian action-angle formalism is used in quasi-axisymmetric configurations to investigate the overlap of drift-orbit resonances leading to chaos. The respective analysis is performed with the NEO-RT code originally developed for investigation of neoclassical toroidal viscous torque in tokamak plasmas.