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Abstract

Let £ > 2 be an integer. We prove that factorisation of integers into k parts follows the
Dirichlet distribution Dir (1/k, ..., 1/k) by multidimensional contour integration, thereby
generalising the Deshouillers—Dress—Tenenbaum (DDT) arcsine law on divisors where k =
2. The same holds for factorisation of polynomials or permutations. Dirichlet distribution
with arbitrary parameters can be modelled similarly.

2020 Mathematics Subject Classification: 11M32, 11N37, 11N60 (Primary); 05A05,
05A16, 11T06 (Secondary)

1. Introduction

Given an integer n > 1, it is natural to study the distribution of its divisors over the interval
[1,n] (in logarithmic scale). Let d be a random integer chosen uniformly from the divi-
sors of n. Then D, := logd/logn is a random variable taking values in [0, 1]. While one
can show that the sequence of random variables {D,}° ; does not converge in distribution,
Deshouillers, Dress and Tenenbaum [5] proved the mean of the corresponding distribution
functions converges to that of the arcsine law. More precisely, uniformly for u € [0, 1], we

have
1ZP(D<) 2 in/u+ O !
- < u) = — arcsin /u ,
X " b4 J1og x
n<x
where
1
PD, <u) = — 1
T(n)
din

d<n"

is the distribution function of D, and the error term here is optimal (see also [20, chapter
6-2]).

Recently, Nyandwi and Smati [16] studied the distribution of pairs of divisors of a given
integer on average. Similarly, they also proved the mean of the corresponding distribution
functions converges to that of the beta two-dimensional law uniformly together with the
optimal rate of convergence.

© The Author(s), 2023. Published by Cambridge University Press on behalf of Cambridge Philosophical Society.

https://doi.org/10.1017/S0305004123000427 Published online by Cambridge University Press


https://doi.org/10.1017/S0305004123000427
https://doi.org/10.1017/S0305004123000427

650 SUN-KAI LEUNG

Our main aim here is to generalise their work to higher dimensions, which they claim
is very technical following the usual approach (see [17, p. 2]). Fix k > 2. Given an inte-
ger n>1, let (dy,...,dr) be a random k-tuple chosen uniformly from the set of all
possible factorisation {(mj,...,my) € Nesn=my-- -my}. Then D, = (D;l), - ,fo()) =
(log dy /logn, . .., logdy/logn) is a multivariate random variable taking values in [0, 1]*.
Similarly, we are interested in the mean

1
=~ R(D < DED <)
* n<x

where

_ 1
P(D,%l)gul,...,ng 1)<uk_1) ::r(n) Z Z 1
k di<n"1 di—1 <n'k—1

dy--di—1In

is the distribution function of D,,.
Note that since n =dj - - - d, the multivariate random variable D,, must satisfy

1=DW 4. DO,

and so it actually takes values in the (k — 1)-dimensional probability simplex. We now turn to
the Dirichlet distribution, which is the most natural candidate of modeling such distribution.

Definition 1-1. Let k > 2. The Dirichlet distribution of dimension k with parameters
o1, ...,ar > 0is denoted by Dir (1, . . ., o) , which is defined on the (k — 1)-dimensional
probability simplex

A=, €017 4 = 1)

having density

k
F<Zi:1ai> d a;i—1
o) b

fa(tt, ... )= 1—[5;:1 Fai)

For instance, when k =2, Dirichlet distribution reduces to beta distribution Beta («, 8)
with parameters «, 8. In particular, Beta (1/2, 1/2) is the arcsine distribution.

As we will see, factorisation of integers into k parts follows the Dirichlet distribution
Dir (1/k,...,1/k). Since for each i the parameter o; = 1/k is less than 1, the density
Jfa(t1, ..., ) blows up most rapidly at the k vertices of the probability simplex. Therefore,
our intuition that a typical factorisation of integers into k parts consists of one large factor
and k — 1 small factors is justified quantitatively.

By definition, for uy, ..., u;—1 > 0 satisfying u; + - - - + ux—1 < 1, the distribution func-
tion of Dir («1, . . ., o) is given by
u Ug—1
Fa(u],...,uk_l)ZZ/ / fa(tl,...,[k_l,l—tl—-~-—tk_1)dt1~-'dtk_1.
0 0
From now on until Section 6, we shall fix & = (1/k, ..., 1/k) and omit the subscript.

The main results are stated as follows.
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THEOREM 1-1. Letk > 2 be a fixed integer. Then uniformly for x > 2 and uy, . . . ,ux—1 >
0 satisfying uy + - - - + uxg—1 < 1, we have

%Zl Z Z 1=F(M1,---,uk—1)+0< 1,). (1-1)

n<x tk(n)dl <nt djy <=1 (log x)*
dy---di—1ln
The error term here is optimal if full uniformity in uy, . . ., ux—1 is required. Indeed, if we
choose uj =---=up_p= % ur—1 =0, then one can show that the left-hand side of (1-1) is

of order (log x)_% using [5, théoréme T] followed by partial summation.

Remark 1-1. Instead of using the logarithmic scale, one may also study localised
factorisation of integers, say for instance the quantity

H(x,y,2) =

’

there exists (dy,...,dr_1) € Nk—1 such that
n<x:
dy---dy—1lnandy; <d; <zifori=1,...,k—1

which was discussed in [13].

Note that Theorem 1-1 implies that for any axis-parallel rectangle R € A1, we have

EZP(DneR)=/dF+0( ! 1).
* R (log x)*

n<x

Since every Borel subset of the simplex can be approximated by finite unions of such
rectangles, the following corollary is an immediate consequence of Theorem 1-1.

COROLLARY 1-1. Letk > 2 be a fixed integer. For x > 1, let n be a random integer chosen
uniformly from [1,x] and (d1, . . ., dy) be a random k-tuple chosen uniformly from the set of
all possible factorisation {(my, . .., my) € N :n=my - - - my}. Then as x — oo, we have the
convergence in distribution

log d; logdr\ a . (1 1
. —Dir| —,...,=].
logn logn k k

It is a general phenomenon that the “anatomy” of polynomials or permutations is essen-
tially the same as that of integers (see [9, 10]), and the main theorem here is no exception. In
the realm of polynomials, the following theorem serves as the counterpart to Theorem 1-1.

THEOREM 1-2. Let k > 2 be a fixed integer and q be a fixed prime power. Then uniformly

forn>=1anduy,...,ux—1 =0 satisfying uy + - - - + up—1 < 1, we have
ADVETIDY > 1=r o(rt). a2
— —_— . =F(uy,...,u— n , .
q" w(F) ‘ "‘
FeMqy(n) DieMy Dy_1eMy
deg Dy <nuy deg Dy <nuj—1
Dy--Dy—1|F

where the notations are defined in Section 2.
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COROLLARY 1-2. Let k > 2 be a fixed integer and q be a fixed prime power. For n > 1,
let F be a random polynomial chosen uniformly from My(n) and (D1, . . ., Dy) be a random
k-tuple chosen uniformly from the set of all possible factorisation {(Gy, . . ., Gy) € MI; F =
G1 - - - Gi}. Then as n — oo, we have the convergence in distribution

deg D deg Dy d (1 1
verey——— | —>Dir| —,..., = ).
n n k k

Similarly, in the realm of permutations, the following theorem serves as the counterpart
to Theorem 1-1.

THEOREM 1-3. Let k > 2 be a fixed integer. Then uniformly forn > 1 anduy, . .., up—1 >
0 satisfying uy + - - - + ux—1 < 1, we have

1 ! S i=Fa,.un+0(nt), (1-3)

n! (o
0 €Sy k(o) [n]=A,U---UA
o(AD=Ani=1,...k

0< A | <nupi=1,...k—1

where the notations are defined in Section 2.

COROLLARY 1-3. Let k > 2 be a fixed integer. For n > 1, let 0 be a random permuta-
tion chosen uniformly from S, and (A1, . . ., Ax) be a random k-tuple chosen uniformly from
the set of all possible o -invariant decomposition {(B1, ...,Bx):[n]=BjU---UBy,0(B;) =
Bifori=1,...,k}. Then as n — oo, we have the convergence in distribution

|A1] Al ¢ . (1 1
— ..., — || —Dir|{—,...,— ).
n n k k

In Section 7, we model the Dirichlet distribution with arbitrary parameters by assign-
ing probability weights which are not necessarily uniform to each integer and to each
factorisation. Then, as we will see, most of the results in the literature about the distribu-
tion of divisors in logarithmic scale are direct consequences of Theorem 7-1, which is a
generalisation of Theorem 1-1.

2. Notation
Throughout the paper, we shall adopt the following list of notation:
(a) we say f(x) =0(g(x)) or f(x) < g(x) if there exists a constant C > 0 which might
depend on k, ¢, &, B, ¢, § such that |f(x)| < C - g(x) whenever x > xq for some xy > 0;
(b) [n]:= {1,2,...,n};
) wn) := {di,....d)eNn=d; - di}| and T(n) := Ta(n);
(d) My := {F eFy[x]:F is monic};
(e) My(n):={FeM,: degF=n};
() w(F):= {(D1,....Dy) e ME:F=Dj---Di}l;
(g) S, denotes the group of permutations on [n];
(h) c(o) denotes the number of disjoint cycles of the permutation o;
(i) Ta(0):= a“);

() [}] :== o €8n:c(o) =k}| denote (unsigned) Stirling numbers of the first kind.
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3. Properties of D(s1, ..., Sk)

Both [5, 16] deal with the divisors one by one using [5, théoreme T] followed by partial
summation. However, as k gets larger, it is increasingly laborious to achieve full unifor-
mity as well as the optimal rate of convergence, especially when one of the u’s is small or
ur + - - -+ ug—1 is close to 1. Instead, we would like to apply Mellin’s inversion formula to
(the second derivative of) the multiple Dirichlet series D(sy, . . ., sx) defined below, which
allows a more symmetric approach to the problem so that all the divisors can be handled
simultaneously. We first establish a few properties of the multiple Dirichlet series that are
essential to the proof of Theorem 1-1.

LEMMA 3-1. Let D(sy, . .., sx) denote the multiple Dirichlet series
Z i k(m nk) !
m=l  m=l
Then D(sy, . . ., Sg) converges absolutely in the domain
Q:= {(s1,...,50) € CF:Re(s)) > 1 forj=1,...,k}

and uniformly on any compact subset of Q. In particular, D(sy,...,sy) is an analytic
function of k variables in 2.

Proof. Letoj:= Re(s;) for j=1, ..., k. Then, since

1
WOy o) < oo

nl e o o nk
the lemma follows.

LEMMA 3.2. The multiple Dirichlet series D(s1, ..., sy) can be expressed as the Euler
product

l—[ Z Z <v1+ +vk+k 1) 1p—(V1S1+“'+VkSk)

p vi=0 vr=0

in the domain Q2 defined above.

Proof. Lety > 2 and oj:= Re(s;) forj=1, ..., k. Then, since

00 00 1 —1 1 -1
Z ) Z (v1+ +vk+k 1) p—(V101+---+VkUk) < (1 — _) e (1 — _) < 00,
v1=0 k=0

pol pUk

the finite product

o0 o0 1
Z. Z <V1+ +Vk+k 1) p s

p<yvi=0  we=0

is well-defined.

https://doi.org/10.1017/S0305004123000427 Published online by Cambridge University Press


https://doi.org/10.1017/S0305004123000427

654 SUN-KAI LEUNG
Let S(v):= {n > 1: p|n implies p < y} be the set of y-smooth numbers. Then, since

(") = <v+k 1) ,

we have

1
1_[ Z Z (V1+ +Vk+k 1) pmWISITTS) Dy )

p<yvi=0 =0

Z Z rk(nl ’:lk) —D(s1, ..., %)

mesy)  meSy) ny k

The lemma follows by letting y — oo.

LEMMA 3.3, Forj=1,...,k, letR; C {sj € C:Re(sj) > 3/4, [Im(sj)| > 1/4} be a zero-
free region for {(sj). Then the multiple Dirichlet series D(sy,...,sr) can be continued
analytically to the domain ]_[]]f:1 R;. Moreover, we have the bound

Disi, ... s1) K |L()IE - [ (5| F 31)

Proof. Let (s1,...,8r) € Ck with oj:= Re(sj) > 1 forj=1,...,k Then by Lemma 3.2
we have the Euler product expression

() - E(sk) ED(s1 - L 5)

:l_[ ﬁ(l ) Z Z (VH- +Vk+k 1) lp—(v131+~~~+vksk),
p \j=1

v1=0 =0
where the kth root is understood as its principal branch.

Forj=1,...,k, expanding the kth root as
> 1
rf+ —rsj
> D (1;) P,
r=0

we find that the factors of the Euler product are 1+ O (Zf: | Zlle p_(""+"f>) by Taylor’s
theorem. Therefore, the function

£(s1)F - £(s) T ED(s1, - 0 58) (3-2)
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can be continued analytically to the domain where Re(s;) > 3/4 forj=1, ..., k, in which it
is uniformly bounded.
On the other hand, for (sq,...,s;) € ]_[jl-‘:1 R;, we can express D(sy, . .., ;) as

CF L0 (C6DTE - 60T DG s0)
and so the lemma follows.
LEMMA 3-4. In the open hypercube
0:= {(sl,...,sk)e(Ck: 1 <Re(s)) < %, [Im(s;)| < % forj= 1,...,k},

we have the estimate

82k 1 k 1 i, L
PY IR 8S2D(s1,...,5k): 1+% ﬁ(sl_l) 2 (s — 1) F
2. 982

x(1+O0(sy — 1+ - -+ |sx — 1])).
Proof. By (3-2) and the fact that
1
$(s)= 1 +0(1), (3-3)

we have the power series representation

(1= DF (5= DEDGstos) = Y @i (st — DY - (s — D

in Q for some constants a;,

.....

82k 1 k 1 L, o
Py aS2D(s1,...,s1<)= 1+% ﬁ(sl_]) 2 (s — )R
2. 982

x(ap + O(st — 1/ +-- -+ [sk — 1)),

where by (3-3) and Lemma 3-2, the leading coefficient

1\ — ad -
= _Z vtttk 1Y TN (e
“0—1_[(1 ,,)Z Do () pren
p v1=0 V=
1 « k—1 =1\ !
= v+k— v+k— —
- (I_Z)Z(k—l)(k—1> =1
p v=0
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4. Proof of Theorem 1-1
We begin with writing

ZZZI

d<nl dy_1 <n'k=1
dy--di_1|n

1
S IEH | SERED S SRR St |
néxr(n) dp<a di— <x'k=1 dy <x dy_ <x'k=1
dy--dg—1|n dy--dg—1|n
n"i <d;<x'J for some j

where the main term is

1
Z k() Z Z 1= Z Z Z w(dy - dy) @D

dy<xl di— <HMk1 dy <x" dy—y XM= dp <x/(dy-+-dg—1)
dy--di_1|n

and the error term is

IETPIEED SIRES 30 IETIPIID D TS

T

A< d KAk j=1 n<x k( ) n' <di<x' o di XML
dy--dg—1ln uj#0 dy-dg—1ln

n"i <d;<x'V for some j

Let us first bound the error term (4-2). For j=1,...,k—1 with u; #0, we write n =

. R 1—u;)/uj
dym for some integer m. Then d; > n"/ implies m < dj(. 4/ , and the number of ways of

obtaining m as a product d - - - dj_1djy1 - - - di is bounded by 7,1 (m). It follows that

1 Tk—1(m)
Lo, I BT T tm e
n<x n 1<d LY di<ati for i#j d]gx“/ (1 uj)/uj J

dy-di—1|n

If u; < 1/2, then using [14, theorem 14-2], this is bounded by

(I —uj)/u;

Tk—1(m d;
2, 2 kfk(];;)) « Qe
d,gx”/ (1 up)/uj 2<d; < <10g d( uj /u/) I3
X
L ———7.
(logx)*®
Otherwise, it follows from the simple observation

Tk—1(m) < Ty—1(djm) < Ti—1(d))
w(dim) ~ w(dm) — w(d)

(4-4)
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that the expression (4-3) is bounded by

Z dgl—uj)/ujfk—l(dj) < x Z Tk—1(d))
/ 7 (d)) P T(d))

s
di<x X

X

< ,
(log x)*

again using [14, theorem 14-2].
Now we are left with the main term (4-1). In order to apply Mellin’s inversion formula,
we follow the treatment in [11] and [14, chapter 13].

LEMMA 4-1. Let T > 1. Let ¢, : [0, 00) = R be smooth functions supported on [0,1]
and [O, 141/ T] respectively with

po)=1  ify<i—1
¢Mel0, 11 ifl—F<y<l1,
¢()=0 ify>1

and

v =1 fy<l,
Y el0 1] ifl<y<l+4
(=0 ify>1+ .
Moreover, for each integer j>0, their derivatives satisfy the growth condition

d9D(y), YD (y) < TV uniformly for y>0. Let ®(s), W(s) be the Mellin transform of
d(), ¥ (y) respectively for 1 <Re(s) <2, i.e.

00 de
(s) = / s
0 y

and

R d
o= [ vow?.
0 y

Then we have the estimates

1 1
D(s), U(s) = " +0 (;) , 4-5)
and
7!
D(s), ¥(s) K W (4-6)
forj>1.
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Proof. See [11, theorem 4].

We need the following version of Hankel’s lemma to extract the main contribution from
the multidimensional contour integral in the proof of Lemma 4-3.

LEMMA 4.2. Let x> 1,0 > 1 and Re(a) > 1. Then we have

| X 1o »
— ds = (log y)*~"dy.
271 JRe(s)=o S(s — 1) C(a) Jy

Proof. See [14, lemma 13-1].

We now prove the main lemma.

LEMMA 4.3. Letxy,...,x; = eand S(xy, ..., x) denote the weighted sum

Z o Z (IOgdl)2 s (IOgdk)2
Tw(dy - - - dy) '

di<xy dp <xg

Then we have

koo
1 Xj 1
Sty .. x0) = | | / (log yp)¥ tldy; + R(x1, . . ., x0)
1
—1

(1) -

i

with

k k

1 1

Ry, o) <xpxq Y | [ dogxnit! | (dogxt.
j=1 \i=1
i#j

As in [11] and [14, chapter 13], we introduce powers of logarithms to ensure that the
major contribution to the multiple Perron integral below comes from s, . .., sy ~ 1. Later
on, they will be removed by partial summation.

Proof. The proof consists of four steps: Mellin inversion, localisation, approximation and

completion. Forj=1,...,k, let T; = 2(log xJ~)2 and ¢;, ¥; be any smooth functions coincide
with ¢, ¥ respectively from Lemma 4-1. Then the weighted sum S(xy, . . ., x;) is bounded
between

S 3 toedi - ogdy? (d_l)...¢ (%)
wld---dy \x “\w )

di=1  di=1

and

SS 30 ogd - dogdi? (d_l)
T(dy - - - dy) ! x|

di=1 dir=1

dy
Yk (—) : 47
X
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To avoid repetitions, we only establish the upper bound here. Applying Mellin’s inversion
formula, the expression (4-7) becomes

k

> © (log d;)? 2 .
logdp)*---(logd 1 . j
E § : (logdy) (log dj) l_[ / j(sj) (dj) y
Aot Tk(dl Ce dk) =1 2mi Re(sj)=1 2101ng Xj

di=1

Then, by Lemma 3-1 and Lemma 4-1, it is valid to interchange the order of summation and
integration, and so this becomes

1 82k
- —D(S],...,Sk)
(mi) Re(s)=1+ a5 /Re(sk)=1+2lolgxk dsT - - - ds?
xWi(sy)--- \Ilk(sk)xil .- ~x‘,ikds1 <oodsp.  (4-8)

For each j=1,...,k we decompose the vertical contour  [j:=
{Sj €C:Re(sj)=1+1/2log xj} as I}l) U IJ@ U 1}3) (traversed upwards), where

1
1= {s; e bj: Im(s))| < 1/2} ,

17 = {Sj €1j:1/2 < [Im(s))] < TJZ/Z}

and

3
I; )= {S]‘ € 1j : |Im(sj)| > 7}2/2} :

To establish an upper bound on the second derivative of the multiple Dirichlet series, we
shall apply Cauchy’s integral formula for derivatives of k variables. For this purpose, we
invoke Lemma 3-3 with the classical zero-free region

C

el
— ET]' if 7 < IIm(s])| < sz,

Rj =35 € C: RC(SJ') >
otherwise

with ¢ =1/100 say, forj=1, . .., k. Moreover, we introduce the distinguished boundary

=1 e ()
- g el
r = 1 YeCk lwi—si|=1 5 ifsiel®, forj=1 k
Sponsk s = YW1, ., W Hwi = 8il =\ a0 j €L, j=1,...,
1 e 3)
410gx_/ 1fSJEIj

as there are various bounds on ¢(wj;) depending on the height. Then, Cauchy’s formula

implies
92k SUPGy, el o | PWi, .o, wi)l
WD(ﬂ, LS <K WhaeeeWET s sy
§5 .- 08 - -
1 k (nj:s,-eljﬁl) |sj — 1|2> (Hj:s/'qj@) (log Tj) 2) <l_[j:SjeI;3) (log x;) 2>
with

Dwi. ... wi) K [LWDIE -+ [E(we)|
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given by (3-1) from Lemma 3-3. Using (3-3), [21, theorem 3-5] that
¢(wj) < log T;

whenever 1/4 < [Im(w;)| < sz, and the simple upper bound

]

1
[E (Wl < Z T < log xj,

41og Xj

n=1ln

we arrive at the derivative bound

9% 1 1 1
ST 5Pl < [T 1s—=17%2 J] Qogzpit* [ ogxprt.
! k j:SjEI;l) j:SjEI;Z) j:SjEI;3)
(4-9)
Applying (4-6) with j = 1,2 from Lemma 4-1, for j= 1, . . ., k, we have the estimates

(log x))* 3 [W(sj)x; dsj| < xj(log x)k T , 7

Iy 2t

xj(log xj)%+2
Tj
T2/2 dt
(log Tj)%+2 / [W(sj)x;V ds;| < xj(log Tj)%Jr2 / T
I 12t
< xj(log Ty)i+,
and

d .

(s — D E2W(sxdsi < | (s — 1)1 25 L

i i Sj

J J
1/2 1 -2
i + it dt
L Xj /;1/2 2log i
Pt
< xj(log x)F+1, (4-10)

Therefore, combining with (4-5) from Lemma 4-1 and (4-9), the main contribution to

4-8) is
1 a2k d d
~k/ / ﬁp(sl,.“,sk) x‘il...xikﬂ...ﬁ 4-11)
Qmiy* J» 1D\ sy -+ - 3 s1 Sk

with an error term

k k
1 1
<xi-x y | [T dogx**! [ (log (4-12)
j=1 \ i=1
i#

as T;=2(logxj)* forj=1,...,k.
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Applying Lemma 3-4, the main contribution to (4-11) is

N1 &1 L1, g ds)
(1 + %) Kk n (% 0 (55— D78 ; (4-13)
= J

J

with an error term

k k
by s —loo gdsi
<<Z/1m (s; — )% 5 ]‘[/I(l) (s;i— )% xis_,-" (4-14)
j=1"% T =1 Y
i#j
Forj=1,...,k, we have
_1 4 desj 1/2 1 , _%_1
(=D X —| Ly + it dt
];1) Sj —1/2 210g)CJ
1
L xj(log x;)*.
Combining with (4-10), the expression (4-14) is
k k . '
<xix Yy | ] dogxpet! | (dogxpt. (4-15)
j=1 \ i=1

i#]

Since forj=1, ..., k we have the bound

/

Re(s./')zl"’_ 2 lolg Xj

_1_5 5 ds;

(s —1)7% 2y
i,

j

®
< xj/ R 3dr
12

Im(s;)|> 3
<L xj,

it follows from (4-10) that the main contribution to (4-13) is

k k
1 1 1 1 s-de
1+—> — —f (sj— 1)k 2] L (4-16)
( k kkg 2 Re(s,‘)=1+ﬁng Isj

with an error term

k Kk
1
<L X1 ~xkzn(logxi)?+l. 4-17)

j=1 i=1
i#]

Applying Lemma 4.2, forj=1, ...,k we have
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1 L ds 1 X 1
L (5 — 1 E2 ’——)/1 (log )t +dy;

; J
271 JRe(s)=1+ yr Sj (% +2

Nt k[
=(1+- —/ (log y)* ' dy;.
()

Finally, the lemma follows from collecting the main term (4-16) and the error terms (4-12),
(4-15) and (4-17).

To proceed to the computation of the main term (4-1), we first show that it suffices to
limit ourselves to the region where u; + - - - + ux—1 <1 — 1/log x. Otherwise, if u; + - - - +
ux—1 > 1 —1/log x, then we may assume without loss of generality that u;_; > 1 /2k. We
now show that when replacing ux_1 by ur—1; — 1/log x, both the right-hand sides of (4-1)
and (1-1) are changed by a negligible amount. Arguing similarly as before, we have

>y > Y

dp <1 dy—p <xMk—2 _ 1 dp<x/(dy---di—1)
= k=25 xh1 T Togx Ly Ltk <

Tj—1(m)
< . (4-18)
~
Z Z T (dg—1m)
P m<x/dy
1 TIORY Cgy otee

If up—1 < 1/2, then using [14, theorem 14-2], this is bounded by
Tr—1(m X
&« X1 Z k—1( )<< .
| T (m) (log x)*

I+ =~y
m<x Togx “k—1

Otherwise, again it follows from the observation (4-4) that (4-18) is

Tp—1 (dp— X
« xlmtel Z k—1(dr—1) < N
Aot T(di-1)  (logx)*

On the other hand, by making the change of variables #j = (1 — #x—1)s; forj=1,...,k—

2, we have
11 k=2 1—1 -1 1_
x/ fe1 (/ / fk (=t — =) E Nty - dy_s ) dy
Up—1— logx
<x/ lk l(l—tk 1) kdtk 1
1
Uk—1" Togx
u] ug_n
T—u_q T—up_ %—1 %—l 1_4
X A A iH "'Sk_z(l_sl_"'_sk—2)k dsl"'dsk—Z

1
Togx 1_1 1
<<X/ Y (0 - o) TR < T (4:19)
0 (log x)*

Therefore, we can always assume u] + - - - + ur—1 < 1 — 1/log x. Arguing similarly, we can
further limit ourselves to the smaller region where uy, . .., ur—1 > 1/log x as well.
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In order to apply Lemma 4-3, we express the main term (4-1) as

)SEREEDS > o

3<d <l 3<dy— SxMk=1 3Kk <x/(dy -+di—1) w(di
k-1 .
O 2200 X cara
j=ld=12  d&i<x" di<x/(dy-+dy—1)
i=1,.., kfl,iyéj
1
+o| > ey el K (4-20)
dr=1,2 dy <x"1 dp— <xVk—1 Tkldy k

Forj=1,...,k— 1, again it follows from [14, theorem 14-2] that

1 —1(m) —1(m)
Yy.oyoon mngklerzu

T(m Tr—12m
d=12  di<ati de<a/(dydiy) m<x k(m) m<x/2 K 1(2m)

X
<

(log )k
and similarly

1 T4—1(m) Tk—1(m)
2 X X ra Sl a T X wom

T (m Ti—1(2m
B=12d < dp g <1 m<x k(m) m<x/2 ¥ 1(2m)

X

< =
(log x)*

By partial summation (or more precisely multiple Riemann—Stieltjes integration) and
Lemma 4-3, the main term of (4-20) is

¥41 xlk—1 X
/ / f e S
(1ogx1>2 (logxp)?

T Gogx) k1 (log wot Ty - dig

X1 xk—1 m 1 1
_|_/ / / dR(x1, ..., Xxk)
e e e (log x1 )2 (log Xk)2

=5+ 1.

Finally, it remains to compute the integrals I} and /5.

LEMMA 4-4. The first integral 11 equals

X
F(u,...,up—1)x+ 0 |-
(log x)*
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Proof. Making the change of variables xj=x% for j=1,...,k—1, the integral I,
becomes

logx up Uk—1 =ty = —tg1 1_1 l_l

e Y A ML 5 | T
7/ 1 1 t] $ox dty
r (F) logx Togx logx

- dty.
Integrating by parts with respect to # gives
=ty ——fg—1 | I—t1 ==t
1 14X e
t,f xtkdth(l—tl—-“—tk_l)k 1 ] — 7
Tog ogx (log x)*
1\ 1 == 1,
+{1-- / 1t “xdn. 4-21)
k) logx J 1
log x
Therefore, the contribution of the first term of (4-21) to the integral I is
x uy Ue—1 1 _4 1_4 -
k/ f tf "'t]f,l(l—fl—"'tkfl)% ldl‘l---dtkfl.
1 1
Note that
X uj Ug—1 1_1 l—l 1 1
F(uy,...,up_1)x= k/] /1 l‘{{ ‘”l]i(_l(l—tl—”-tk_l)%_dtl'-‘dtk_l

k= logx 1_q
Z/ / /rl et =1 —

0t <uy
i#j

1
)k Nt - dey

(4-22)
Without loss of generality, it suffices to bound the term where j =
we have

=k — 1. Similar to (4-19),

'°gx{“ A - s o an o) d
1 SRR PN 1= —I—1) ty - diy—2 | dig—1

1og
<<x/ tk l(l—tk Dk <
0

= (4-23)
(log x)x
On the other hand, the contribution of the second term of (4-21) to the integral /] is

ALy A
< (logx)l_% l_[ /1 tj" xt-"dtj < (logx)l_% uj"

j=1
If uj > 1/2k for some j=1, ...,k — 1, then this is

log x

R L L —" — (4-24)
(log x)%
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as k > 2. Otherwise, the contribution is

& I (Jog x)l—% <%\

We also have

I=tj—tp—1 | 1—t]— e —tp_y
=2 1_»X
T T C R A e —
1 log x

logx

so that the contribution of the last term of (4-21) to the integral /] is

uj Uk—1 l_l 1_1
< X t{( 'Stlf—l (l—tl—"‘—tk—l)%_zdll"'dfk—l-
log x 1
logx
Making the change of variables s =1 — ] — - - - — f;_1, this is bounded by
og ¢ Up— 2 1- 1_
X T ) (/ / ! ~t,§_21(1 =t = —_)E ---dtkz) ds.
log x
logx Togx
(4-25)
Similar to (4-19), the integral in the parentheses is < (1 — s) , and so (4-25) is
X 1_% 1_,5 _1 X
skTA(1 — ) kds < - (4-26)
log x Tog% (log x)*

Collecting the main term of (4-22) and the error terms (4-23), (4-24) and (4-26), the lemma
follows.
LEMMA 4-5. The second integral I is

X
<

(log )t
Proof. The integral I is bounded by
DD

li<ujlog x,j=1,....k—1
h<logx—lj—-—l_1

where

I(l).: / f . 1 dR(x; )
2 <logx1)2 " (logx)? T

Xj el it j=1,...,

0

By integration by parts, for each /, the integral I,” is bounded by

((IOgX)2)

= Z Ig;J).

JEIk]

3 // S RG xk)|l_[lzl_[

p Lol J T jel
J_[Jxe[elfel‘*"],/EJ xjlel el )¢S 7# ’
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For each subset J C [k], the integral Ig;h is

1
< max [RCx1, - o X0 / /
( G ek ) 1_[ x,(log xj)? 1_[xj(logx )3
=1,

X;€ e’ e’
i€l ’ it
xe[el el

del s dxk.

Applying Lemma 4-3, this is

1 1
< Z / / log xl H )2 e

o jer (logx)! 7% Gy (log x;

xe[e! el

Summing over every [, we have

Ah-le o€ 1
(F)) lkl
DD DS o (AR A

1—1
1;<uj log xj=1,..., jeg (logx;j) &
Ik <logx— l]—---—lk,l

X 1_[ ;dxl -+ dxg.

1
ies (logx)* &

To avoid repetitions, we only bound the contribution of the term where i = k here. Making
the change of variables x; = xiforj=1,...,k—1,it becomes

1 1 ko
1 Y logx U1t iogz (1 Tog—h fht 1 t%_l t%_z fH gy dt
W 1 R 1 k i i t @
g log x

Toex Toex el jel
which is
1 1 k
N ogx Uitiogy (o= -1 1_1 11,
<</ . / / tlk ... tli{—l t]é xt1+"'+tkdt] - dty.
1 1 1
logx log x log x
4-27)
Integrating by parts with respect to #; gives
1+$—t1 ----- =1 1_o . k %—2 xl*l]*mftk,]
/ tf xkdyp <1+ — =t — -+ —tr—1 T
L log x log x
log x
Therefore, the expression (4-27) is
1 1 1_»
x Ut fogx U1V Iogx 1 1 k K
< f / tlk “'tli(—l 14+ ——t— - —ti_1 dty - - - di_1.
logx J 1 1 log x
Togx Togx
Similar to (4-19), this is
1
X 1+lo§;x - Tk x
- 1+ - ds K —.
logx log x (log x)*

Finally, the lemma follows from summing over every subset J C [k].
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5. Proof of Theorem 1-2

We first define the function field analogue of the multiple Dirichlet series D(sy, . . ., S).
Definition 5-1. For (sq,...,s;) € 2, the multiple Dirichlet series D[Fq[xJ(S], ..., S8k) 18
defined as

Z Z Tw(Fy - Fp)™!
qSl deg F1+---+s deg Fy *
Fi

Having the multiple Dirichlet series D]Fq[x](sl, ..., 8¢) in hand, it is now clear that we
can follow exactly the same steps as before. Moreover, since the function field zeta function
¢F, (s) never vanishes (see [18, chapter 2]), some of the computations above can be simplified
considerably. To avoid repetitions, the complete proof is omitted here.

6. Proof of Theorem 1-3

It is clear that one can argue similarly but a more direct and elementary proof is presented
here. We begin with the combinatorial analogue of the mean of divisor functions.

LEMMA 6-1. Leta € C\ Zgo and n € Z>¢. Then we have
1 -
— 2 Talo)= ("), (61)
" oeS,

Moreover, we have the estimate
1 ifn=0,
! (1 + Oq (%)) ifn>1.

Proof. Although (6-1) is fairly standard, say for instance one may apply [19, corollary
5-1.9] with f = o, we provide a short proof here for the sake of completeness. Adopting the
notations in Section 2, we write

(o) =

(6-2)

n

Z Ty(0) = Z [Z] ok,

oES, k=0

Now any permutation o € S;,, with k disjoint cycles can be constructed by the following
procedure. To begin with, there are (n — 1)(n —2) - - - (n — i1 + 1) ways of choosing i} — 1
distinct integers from [n] \ {1} to form a cycle C; with length i; containing 1. Then, fix
any integer m € [n] not contained in the cycle C;. Similarly, there are (n —i; —1)---(n —
i1 —ip + 1) ways of choosing i» — 1 integers from [n] \ C; to form another cycle C, with
length i> containing m. Repeating the same procedure until iy + - - - + iy =n, we arrive at a
permutation with & disjoint cycles.

Therefore, the expression (6-1) follows from the explicit formula

HE S gt
k i=1 ikzlnjl'czl (n—1i _"’_ij),
i1+ Fig=n
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which can be seen as the coefficient of o in the falling factorial
m+oa—Dn+a—2) - (a+ Da.

On the other hand, to prove (6-2), we express the binomial coefficient as a ratio of gamma
functions, followed by the application of Stirling’s formula.

Similar to Theorem 1-1, without loss of generality we shall assume u1, . . . ug—1, | —u; —

- — ug—1 = 1/n. Interchanging the order of summation, we have

%aes rk(lo) ZZ IZ_Z Z ~~~~~ ﬁ Z 1

[n]=A{U---UAg Co<m < i=1 \oeSy,
o(Ap)=Ai,i=1,...k i=1,....k—1

0<|A; | <nugi=1,....k—1

Ll 1
=Zzn - , (6-3)
3
o<mi<nn i=1 \"™ oes,, (o)
i=1,...,k—1
where my:=n—mp — -+ - — my_1.
Note that (o)~ ! =1 /k(0). Applying (6-1) from Lemma 6-1, the expression (6-3)
equals

k
m,.+%,1> :
> T (6-4)
o<m;<ny;  i=1
i=1,...k—1

Let I C [k — 1] be a nonempty subset. Then using (6-2) from Lemma 6-1, the contribution
of mj=0to (6-4) forielis

<2 Z(Hm ) i n—i'z...zo—[(%)i—l)

1<m; <nu; i¢l 1<m; <nu; i¢l
i¢l i¢l
1
1
(1 _me ’”’H)k k=11
n n
which is

1

ant - /(Hrk ><1_Zt,.>k_lndti<<n—'i. ©5)

o<n<u; V# igl i¢l
i¢l
Also, the contribution of m; > nu; — 1 for some j=1,...,k—1 to (6-4) given that

miy,...,mp>11s

-l k 1
<<Z(”M)k 12 an% =n %Z(nuj)%_lzzn<%>k 1.
j=1

1<mi<nu;  i=1 1<mi<nu;  i=1

i#j i#j i#j i#]
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Since uj > 1/nforj=1,...,k—1, thisis

k—1 k=1,
<<n*% Z(nuj)%’l // l_[t.z_l(l_[l —"'—fk—l)%ildtl e dipq
j=1

0<ti<upi=1,...k— 1’17&1

ij
k—1 . .
<n i Z(nu,)k (1—u) *<n%. (6-6)
j=1

Collecting the error terms (6-5) and (6-6), the expression (6-4) equals

k
ST (mffji—l) +0m ). (6-7)

1<mi<nu—1 i=1

Applying (6-2) from Lemma 6-1, the main term of (6-7) is the Riemann sum

> Y (m) — (68)

| k
(Z) 1<mi<nui—1 i=1

with an error term
k 1

o T RN

1<mi<nui—1 i=1
i=1,...k—1 #

Let us first bound the error term (6-9). Foreach j=1, ...,k — 1, we have

Ly sty

n
1<my<nu—1 1<mi<nui—1 i=1
i=1,...k—1,i%j i#
_1 k—1
1l 1 - 1
<[ ) T a-n—- o —nopF - dney
" 0i<u =)
i=1,...k—1i#j 77

1 =3 U
<<n o =gk <LnE

Arguing similarly for j = k, we also have

1 ol mi\ +-1 my, -2 1 1
TG () et

1<mi<nui—1 i=1

Therefore, the error term (6-9) is < n*% and we are left with the main term (6-8).
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The distribution function F(uy, . .., ux—1) equals

m1+1 mg_1+1 . X
n -1 11 1
% 3 1
(1 kz Z/ /_I tl ...tk_l(l_tl_..._tk_l)k dty --
- ) 1<mi<nui—1 n
k) (N 1
i=1,...k—1
Lol . 1
n [ -
+0 / tf //l_[t (I—t1— - —fx_)F Ndry - dy_
, 0 !
=1 0< 1 <ui ‘;1.
i /
k=1 oy . k=1, .
+ 0 / ltjk //1_[ tk (l—l‘l— =tk dty - - dte
=174 0<<u; =]
SIS i

i#]

The first error term in (6-10) is

1

<<Z/ tF l—tj) kdt]<<n%

The second error term in (6-10) is

1 1

k—1
<<Z/ 7 -y < Z/O -y
j=1

1

Ln k.

By Taylor’s theorem, for (t,..., k1) € [ml/n, (my + 1)/n] X

[(mk—1)/n, (mg—1 + 1)/n], we have

k 1 k
11 1_4 1 mi\ 7—1 1 mi\ r—2 :
4TI ol () TIC

i=1 j=1 i=1
1

Using the approximation, we conclude from (6-10), (6-11) and (6-12) that

I 1§ () R
(E) 1-<m,<nu,—lz 1
i=1,...k—1

FQuy,...,uk—1)=

oI T (@) T |

and the last error term here is exactly the same as (6-9), which is again < n™%.
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7. Factorisation into k parts in the general setting

With a view to model Dirichlet distribution with arbitrary parameters, we further explore
the factorisation of integers into k parts in the general setting using multiplicative functions
of several variables defined below.

Definition 7-1. An arithmetic function of k variables F: N — C is said to be multiplica-
tive if it satisfies the condition F(1,..., 1) =1 and the functional equation

F(miny,...,mn) =F@my, ..., m)F@ny, ..., n)

whenever (m - - - mg, ny - - - ng) = 1, or equivalently,

F(ny,...,n) = 1_[ F(pr(nl), o ,pr(nk))’
p

where v, (n) := max{k >0 :pk|n}.

Remark 7-1. Multiplicative functions of several variables, such as the “GCD function”
and the “LCM function” are interesting for their own sake. See [22] for further discussion.

To adapt the proof of Theorem 1-1, we consider the following class of multiplicative
functions.

Definition 7-2. Let e = (a1, ...,ax),B=B1,...,Br),c=(1,...,¢k),6=(51,...,5k)
with o}, Bj,¢; > 0,8, >0 for j=1,...,k. We denote by M(a;pB,c, ) the class of non-
negative multiplicative functions of k variables F: N¥ — C satisfying the following

conditions:
j-th
(a) (divisor bound) forj=1,...,k, wehave |[F(1,..., n ,...1)| < rﬁj(n), where

. vp(m)+p—1
rﬁ(n)._]_[( oy )
p

is the generalised divisor function;

(b) (analytic continuation) let s =0 + it € C. Forj=1, ..., k, the Dirichlet series

jth
~ =
. F,..., p,...1)—qj
Pr(see,j):= E - J
> p

defined for o > 1 can be continued analytically to the domain where o > 1 —
¢j/log 2+ [t]);

(c) (growthrate) forj=1,...,k, in the domain above we have the bound
Pr(s;e,j) < §jlog (2 + [1]).

For instance, the multiplicative function F(ny,...,n;) = tx(ny - - ) ! belongs to the
class M (1/k;1/k,1,0).
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Applying the Mellin transform to (higher derivatives of) the multiple Dirichlet series

o0

o Flu,...omp)
Dr(sty ..o 5k) = Zzs.—nsk
o

ni=l1 n=1
as before, one can prove the following generalisation of Lemma 4-3.

LEMMA 7-1. Given a multiplicative function of k variables F € M(a;8,¢,8). Let m > 2
be an integer and x1, . . ., xi > e. We denote by Sp(x1, . . ., xi;m) the weighted sum

> Y (ogd)™ - (logdi)"F(dy, . . . dy).
d1<x dy <x
Then there exists my = mo(eL, B, ¢, 8) such that for any integer m > mgy, we have

k

SF(X1,.--,Xk;M)=1_[

Jj=l1

1
I(aj)

xj . —
/ (log )%™ dy; + Rp(xi, . . ., xism)
1

with

k k

Rp(ry,. . oxem) <xi-ox y | [[dogxn® ™™= | (log x®t™=2.
j=1 \i=1
i

To model the Dirichlet distribution by factorizing integers into k parts, we consider the
following class of pairs of multiplicative functions.

Definition 7-3. Let 6 > 0 and « be a positive k-tuple. We denote by My(a) the class of
pairs of multiplicative functions (f;G) satisfying the following conditions:

(a) forn > 1, we have

> Gl ...d)>0;
n=d; ---dj
(b) the multiplicative function f belongs to the class M(9;8’, ¢/, §') for some 8/, ¢/, §';
(c) the multiplicative function of k variables
G(d,....,dy)
Zn:el...ek Gley, ..., er)

belongs to the class M(a;8, ¢, §) for some B, ¢, d, where n=d, - - - di.

Fd,...,dp):= f(n)-

Remark 7-2. By definition, we must have 6 = o1 + - - - + o.

Then, applying Lemma 7-1 followed by partial summation as before, one can prove the
following generalisation of Theorem 1-1.

THEOREM 7-1. Let (f;G) be a pair of multiplicative functions belonging to the class
Mog(a). Then uniformly for x > 2 and uy, . . . ,ui—1 > 0 satisfying u; + - - - +up—1 < 1, we
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have

—1 1
> fm) Zf(n)(z G(el,...,ek)> DYoo Y Y Gl dy)

m<x n<x n=ej---ek dy <n"l dy_ 1 <n"—1 dp<n
n=d\--dj,

1
:Fa(ul,...,uk_1)+0( >

(log x)min{l,oq,...,ozk}

Finally, we conclude with the following generalisation of Corollary 1-1.

COROLLARY 7-1. Given a pair of multiplicative functions (f;G) belonging to the
class Mg(a). For x> 1, let n be a random integer chosen from [I, x] with prob-

—1
ability (ngxf(m)) fm) and (dy,...,dy) be a random k-tuple chosen from the

set of all possible factorisation {(my,...,my) € NF:n=my---my} with probability
-1

(Zn#l,wk Gley, ... ,ek)> G(dy,...,dy). Then as x — 0o, we have the convergence in

distribution

(log dy log dy

) 4, Dir(ay,. .. a).
logn logn

Remark 7-3. See [2, 3] for the cases where k =2, 3 respectively, where G(dy, . .., dk)
is of the form (fj*---*xfr—1*1)(d;---dr) for some multiplicative functions
fir-- > fi—1 : N— C.

Example 7-1. For k>2, let 6,Aq,..., > 0. We consider the pair of multiplicative
functions

fm)y=19(n); G, ... ,d)=13,(d1)- - Ta(di).

Then the Dirichlet distribution of dimension k

. ( O O )
Dir e
A+ A At A

can be modelled in the sense of Corollary 7-1. In particular, when 6, Aq,...,Ax =1, it
reduces to Theorem 1-1.

Example 7-2. For g > 3, let {ay, ..., ayq} be a reduced residue system (mod g). We
consider the pair of multiplicative functions

1 if(n,g) =1,
fn)= ;o Gdy,...,dy)
0 otherwise

1 if p|d; implies p = a; (mod g) forj=1, ..., ¢(q),

0 otherwise.
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Then the Dirichlet distribution of dimension ¢(g)

Dir(L,...,L>
w(q) o(q)

can be modelled in the sense of Corollary 7-1. In particular, when g =4, it reduces to [15,
exercise 6-2-22].

Example 7-3. For k > 2, we consider the pair of multiplicative functions

1 if nis a sum of two squares,
f(n)= v Gy, ...,.dy=1.
0 otherwise

Then the Dirichlet distribution of dimension k

. 1 1
Dir|{ —,...,—
<2k 2k>

can be modelled in the sense of Corollary 7-1. In particular, when k =2, it reduces to [6,
theorem 2].

Example 7-4. For k > 2, we consider the pair of multiplicative functions

1 if nis square-free,
fn)= s Gy, ....d)=1.
0 otherwise

Then the Dirichlet distribution of dimension k

a! 1
Dir{—,...,—
<k k)

can be modelled in the sense of Corollary 7-1. In particular, when k =2, it reduces to [8,
theorem 2] with y = x.

Example 7-5. For k> 2, let R be a subset of {{i,j}: 1 <i#j<k}. We consider the pair
of multiplicative functions

1 if (d;,dj) =1 whenever{i,j} ¢ R,
fm=1; Gdi,...,d)=
0 otherwise.

Then the Dirichlet distribution of dimension k
. ( 1 1 )
Dir{—,...,—
k k
can be modelled in the sense of Corollary 7-1. In particular, when k = 2" for r > 2, it reduces

to [4, théoréeme 1-1] with a suitable subset R via total decomposition sets (see [12, theorem
0-20]), which is itself a generalisation of [1, theorem 2-1] for r = 2.
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Example 7-6. For k > 3, we consider the pair of multiplicative functions

k—1 1

=1; Gd,...,dy)= _
fn) (d ) jl:!f(dj"‘dk)

Then the Dirichlet distribution of dimension k

(11 1 1 1
Dir 204 pk=2’ k1" gk—1

can be modelled in the sense of Corollary 7-1. In particular, when k = 3, it reduces to [4,
théoreme 1-2].

Unsurprisingly, we expect that Theorem 7-1 should also hold for polynomials or permuta-
tions. Specifically, in the realm of permutations, the counterpart to multiplicative functions
is the generalised Ewens measure (see [7]). Detailed proofs will be provided in the author’s
doctoral thesis.
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