Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-01T10:58:38.811Z Has data issue: false hasContentIssue false

Non-Hermitian Chern number in rotating Rayleigh–Bénard convection

Published online by Cambridge University Press:  15 November 2024

Furu Zhang
Affiliation:
School of Science, Beijing Forestry University, Beijing 100083, PR China Department of Mechanics and Engineering Science at College of Engineering and State Key Laboratory for Turbulence and Complex Systems, Peking University, Beijing 100871, PR China
Jin-Han Xie*
Affiliation:
Department of Mechanics and Engineering Science at College of Engineering and State Key Laboratory for Turbulence and Complex Systems, Peking University, Beijing 100871, PR China
*
Email address for correspondence: jinhanxie@pku.edu.cn

Abstract

We show that rotating Rayleigh–Bénard convection, where a rotating fluid is heated from below, exhibits a non-Hermitian topological invariant. Recently, Favier & Knobloch (J. Fluid Mech., vol. 895, 2020, R1) hypothesized that the robust sidewall modes in rapidly rotating convection are topologically protected. By considering a Berry curvature defined in the complex wavenumber space, we reveal that the bulk states can be characterized by a non-zero integer Chern number, implying a potential topological origin of the edge modes based on the Atiyah–Patodi–Singer index theorem (Fukaya et al., Phys. Rev. D, vol. 96 2017, 125004; Yu et al., Nucl. Phys. B, vol. 916, 2017, pp. 550–566). The linearized eigenvalue problem is intrinsically non-Hermitian, therefore, the definition of Berry curvature generalizes that of the stably stratified problem. Moreover, the three-dimensional set-up naturally regularizes the eigenvector, avoiding the compactification problem in shallow water waves (Tauber et al., J. Fluid Mech., vol. 868, 2019, R2). Under the hydrostatic approximation, it recovers a two-dimensional analogue of the one which explains the topological origin of the equatorial Kelvin and Yanai waves (Delplace et al., Science, vol. 358, issue 6366, 2017, pp. 1075–1077). The non-zero Chern number relies only on rotation when the fluid is stratified, no matter whether it is stable or unstable. However, the neutrally stratified system does not support a topological invariant. In addition, we define a winding number to visualize the topological nature of the fluid. Our results represent a step forward for the topologically protected states in convection, but the bulk-boundary correspondence requires a further direct analysis for proof, and the robustness of the edge states under varying boundary conditions remains a question to be answered.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.CrossRefGoogle Scholar
Ashida, Y., Gong, Z. & Ueda, M. 2020 Non-Hermitian physics. Adv. Phys. 69 (3), 249435.CrossRefGoogle Scholar
Bergholtz, E.J., Budich, J.C. & Kunst, F.K. 2021 Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93, 015005.CrossRefGoogle Scholar
Berry, M.V. 1984 Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392 (1802), 4557.Google Scholar
Bodenschatz, E., Pesch, W. & Ahlers, G. 2000 Recent developments in Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 32 (1), 709778.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.Google Scholar
Delplace, P., Marston, J.B. & Venaille, A. 2017 Topological origin of equatorial waves. Science 358 (6366), 10751077.CrossRefGoogle ScholarPubMed
Ding, K., Fang, C. & Ma, G. 2022 Non-Hermitian topology and exceptional-point geometries. Nat. Rev. Phys. 4, 745760.CrossRefGoogle Scholar
Ecke, R.E. 2023 Rotating Rayleigh–Bénard convection: bits and pieces. Physica D 444, 133579.CrossRefGoogle Scholar
Ecke, R.E. & Shishkina, O. 2023 Turbulent rotating Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 55 (1), 603638.CrossRefGoogle Scholar
Ecke, R.E., Zhang, X. & Shishkina, O. 2022 Connecting wall modes and boundary zonal flows in rotating Rayleigh–Bénard convection. Phys. Rev. Fluids 7, L011501.CrossRefGoogle Scholar
Ecke, R.E., Zhong, F. & Knobloch, E. 1992 Hopf bifurcation with broken reflection symmetry in rotating Rayleigh–Bénard convection. Europhys. Lett. 19 (3), 177182.CrossRefGoogle Scholar
Essin, A.M. & Gurarie, V. 2011 Bulk-boundary correspondence of topological insulators from their respective green's functions. Phys. Rev. B 84, 125132.CrossRefGoogle Scholar
Favier, B. & Knobloch, E. 2020 Robust wall states in rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 895, R1.CrossRefGoogle Scholar
Fukaya, H., Onogi, T. & Yamaguchi, S. 2017 Atiyah–Patodi–Singer index from the domain-wall fermion dirac operator. Phys. Rev. D 96, 125004.CrossRefGoogle Scholar
Goldstein, H.F., Knobloch, E., Mercader, I. & Net, M. 1993 Convection in a rotating cylinder. Part 1. Linear theory for moderate Prandtl numbers. J, Fluid Mech. 248, 583604.CrossRefGoogle Scholar
Goldstein, H.F., Knobloch, E., Mercader, I. & Net, M. 1994 Convection in a rotating cylinder. Part 2. Linear theory for low Prandtl numbers. J. Fluid Mech. 262, 293324.CrossRefGoogle Scholar
Guervilly, C., Hughes, D.W. & Jones, C.A. 2014 Large-scale vortices in rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 758, 407435.CrossRefGoogle Scholar
Haldane, F.D.M. 1988 Model for a quantum hall effect without landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 20152018.CrossRefGoogle ScholarPubMed
Hasan, M.Z. & Kane, C.L. 2010 Colloquium: topological insulators. Rev. Mod. Phys. 82, 30453067.CrossRefGoogle Scholar
Herrmann, J. & Busse, F.H. 1993 Asymptotic theory of wall-attached convection in a rotating fluid layer. J. Fluid Mech. 255, 183194.CrossRefGoogle Scholar
Horn, S. & Schmid, P.J. 2017 Prograde, retrograde, and oscillatory modes in rotating Rayleigh–Bénard convection. J. Fluid Mech. 831, 182211.CrossRefGoogle Scholar
Imura, K.-I. & Takane, Y. 2019 Generalized bulk-edge correspondence for non-Hermitian topological systems. Phys. Rev. B 100, 165430.CrossRefGoogle Scholar
King, E.M., Stellmach, S. & Aurnou, J.M. 2012 Heat transfer by rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 691, 568582.CrossRefGoogle Scholar
Kosterlitz, J.M. & Thouless, D.J. 1973 Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6 (7), 11811203.CrossRefGoogle Scholar
Kuo, E.Y. & Cross, M.C. 1993 Traveling-wave wall states in rotating Rayleigh–Bénard convection. Phys. Rev. E 47, R2245R2248.CrossRefGoogle ScholarPubMed
Liu, J., Wu, B. & Niu, Q. 2003 Nonlinear evolution of quantum states in the adiabatic regime. Phys. Rev. Lett. 90, 170404.CrossRefGoogle ScholarPubMed
Liu, Y., Chen, X. & Xu, Y. 2020 Topological phononics: from fundamental models to real materials. Adv. Funct. Mater. 30 (8), 1904784.CrossRefGoogle Scholar
Liu, Y. & Ecke, R.E. 1999 Nonlinear traveling waves in rotating Rayleigh–Bénard convection: stability boundaries and phase diffusion. Phys. Rev. E 59, 40914105.CrossRefGoogle Scholar
Ning, L. & Ecke, R.E. 1993 Rotating Rayleigh–Bénard convection: aspect-ratio dependence of the initial bifurcations. Phys. Rev. E 47, 33263333.CrossRefGoogle ScholarPubMed
Okuma, N., Kawabata, K., Shiozaki, K. & Sato, M. 2020 Topological origin of non-Hermitian skin effects. Phys. Rev. Lett. 124, 086801.CrossRefGoogle ScholarPubMed
Onuki, Y., Venaille, A. & Delplace, P. 2024 Bulk-edge correspondence recovered in incompressible geophysical flows. Phys. Rev. Res. 6, 033161.CrossRefGoogle Scholar
Ozawa, T., et al. 2019 Topological photonics. Rev. Mod. Phys. 91, 015006.CrossRefGoogle Scholar
Perez, N., Delplace, P. & Venaille, A. 2021 Manifestation of the berry curvature in geophysical ray tracing. Proc. R. Soc. A 477 (2248), 20200844.CrossRefGoogle Scholar
Rapoport, O. & Goldstein, M. 2023 Generalized topological bulk-edge correspondence in bulk-Hermitian continuous systems with non-Hermitian boundary conditions. Phys. Rev. B 107, 085117.CrossRefGoogle Scholar
Rossby, H.T. 1969 A study of Bénard convection with and without rotation. J. Fluid Mech. 36 (2), 309335.CrossRefGoogle Scholar
Senthil, T. 2015 Symmetry-protected topological phases of quantum matter. Annu. Rev. Condens. Matter Phys. 6 (1), 299324.CrossRefGoogle Scholar
Shankar, S., Souslov, A., Bowick, M.J., Marchetti, M.C. & Vitelli, V. 2022 Topological active matter. Nat. Rev. Phys. 4 (6), 380398.CrossRefGoogle Scholar
Shen, H., Zhen, B. & Fu, L. 2018 Topological band theory for non-Hermitian hamiltonians. Phys. Rev. Lett. 120, 146402.CrossRefGoogle ScholarPubMed
Souslov, A., Dasbiswas, K., Fruchart, M., Vaikuntanathan, S. & Vitelli, V. 2019 Topological waves in fluids with odd viscosity. Phys. Rev. Lett. 122, 128001.CrossRefGoogle ScholarPubMed
Tauber, C., Delplace, P. & Venaille, A. 2019 A bulk-interface correspondence for equatorial waves. J. Fluid Mech. 868, R2.CrossRefGoogle Scholar
Terrien, L., Favier, B. & Knobloch, E. 2023 Suppression of wall modes in rapidly rotating Rayleigh–Bénard convection by narrow horizontal fins. Phys. Rev. Lett. 130, 174002.CrossRefGoogle ScholarPubMed
Thouless, D.J., Kohmoto, M., Nightingale, M.P. & den Nijs, M. 1982 Quantized hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49 (6), 405408.CrossRefGoogle Scholar
Venaille, A. & Delplace, P. 2021 Wave topology brought to the coast. Phys. Rev. Res. 3, 043002.CrossRefGoogle Scholar
Venaille, A., Onuki, Y., Perez, N. & Leclerc, A. 2023 From ray tracing to waves of topological origin in continuous media. SciPost Phys. 14, 062.CrossRefGoogle Scholar
de Wit, X.M., Aguirre Guzmán, A.J., Madonia, M., Cheng, J.S., Clercx, H.J.H. & Kunnen, R.P.J. 2020 Turbulent rotating convection confined in a slender cylinder: the sidewall circulation. Phys. Rev. Fluids 5, 023502.CrossRefGoogle Scholar
Wu, B., Liu, J. & Niu, Q. 2005 Geometric phase for adiabatic evolutions of general quantum states. Phys. Rev. Lett. 94, 140402.CrossRefGoogle ScholarPubMed
Wu, D., Xie, J., Zhou, Y. & An, J. 2022 Connections between the open-boundary spectrum and the generalized brillouin zone in non-Hermitian systems. Phys. Rev. B 105, 045422.CrossRefGoogle Scholar
Xia, Y., et al. 2009 Observation of a large-gap topological-insulator class with a single dirac cone on the surface. Nat. Phys. 5, 398402.CrossRefGoogle Scholar
Xiao, D., Chang, M.-C. & Niu, Q. 2010 Berry phase effects on electronic properties. Rev. Mod. Phys. 82 (3), 19592007.CrossRefGoogle Scholar
Xiao, L., Deng, T.-S., Wang, K., Zhu, G., Wang, Z., Yi, W. & Xue, P. 2019 Non-Hermitian bulk–boundary correspondence in quantum dynamics. Nat. Phys. 16, 761766.CrossRefGoogle Scholar
Yang, Z., Zhang, K., Fang, C. & Hu, J. 2020 Non-Hermitian bulk-boundary correspondence and auxiliary generalized brillouin zone theory. Phys. Rev. Lett. 125, 226402.CrossRefGoogle ScholarPubMed
Yao, S., Song, F. & Wang, Z. 2018 Non-Hermitian Chern bands. Phys. Rev. Lett. 121, 136802.CrossRefGoogle ScholarPubMed
Yokomizo, K. & Murakami, S. 2019 Non-bloch band theory of non-Hermitian systems. Phys. Rev. Lett. 123, 066404.CrossRefGoogle ScholarPubMed
Yokomizo, K. & Murakami, S. 2020 Non-bloch band theory and bulk–edge correspondence in non-Hermitian systems. Prog. Theor. Expl Phys. 2020 (12), 12A102.CrossRefGoogle Scholar
Yu, Y., Wu, Y.-S. & Xie, X. 2017 Bulk–edge correspondence, spectral flow and Atiyah–Patodi–Singer theorem for the z2-invariant in topological insulators. Nucl. Phys. B 916, 550566.CrossRefGoogle Scholar
Zak, J. 1989 Berry's phase for energy bands in solids. Phys. Rev. Lett. 62 (23), 27472750.CrossRefGoogle ScholarPubMed
Zhang, K. & Liao, X. 2009 The onset of convection in rotating circular cylinders with experimental boundary conditions. J. Fluid Mech. 622, 6373.CrossRefGoogle Scholar
Zhang, K., Yang, Z. & Fang, C. 2022 Universal non-Hermitian skin effect in two and higher dimensions. Nat. Commun. 13, 2496.CrossRefGoogle ScholarPubMed
Zhang, X., van Gils, D.P.M., Horn, S., Wedi, M., Zwirner, L., Ahlers, G., Ecke, R.E., Weiss, S., Bodenschatz, E. & Shishkina, O. 2020 Boundary zonal flow in rotating turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 124, 084505.CrossRefGoogle ScholarPubMed
Zhang, X., Zhang, T., Lu, M.-H. & Chen, Y.-F. 2022 A review on non-Hermitian skin effect. Adv. Phys.: X 7 (1), 2109431.Google Scholar
Zhong, F., Ecke, R. & Steinberg, V. 1991 Asymmetric modes and the transition to vortex structures in rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 67, 24732476.CrossRefGoogle ScholarPubMed
Zhong, F., Ecke, R.E. & Steinberg, V. 1993 Rotating Rayleigh–Bénard convection: asymmetric modes and vortex states. J. Fluid Mech. 249, 135159.CrossRefGoogle Scholar
Zhong, J.-Q., Stevens, R.J.A.M., Clercx, H.J.H., Verzicco, R., Lohse, D. & Ahlers, G. 2009 Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 102, 044502.CrossRefGoogle ScholarPubMed
Zhu, Z., Li, C. & Marston, J.B. 2023 Topology of rotating stratified fluids with and without background shear flow. Phys. Rev. Res. 5, 033191.CrossRefGoogle Scholar
Zirnstein, H.-G., Refael, G. & Rosenow, B. 2021 Bulk-boundary correspondence for non-Hermitian hamiltonians via green functions. Phys. Rev. Lett. 126, 216407.CrossRefGoogle ScholarPubMed