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Abstract
With the rapid development of the national economy, the demand for electricity is also growing. Thermal power
generation accounts for the highest proportion of power generation, and coal is the most commonly used com-
bustion material. The massive combustion of coal has led to serious environmental pollution. It is significant to
improve energy conversion efficiency and reduce pollutant emissions effectively. In this paper, an extreme learning
machine model based on improved Kalman particle swarm optimization (ELM-IKPSO) is proposed to establish the
boiler combustion model. The proposed modeling method is applied to the combustion modeling process of a 300
MWe pulverized coal boiler. The simulation results show that compared with the same type of modeling method,
ELM-IKPSO can better predict the boiler thermal efficiency and NOx emission concentration and also show better
generalization performance. Finally, multi-objective optimization is carried out on the established model, and a set
of mutually non-dominated boiler combustion solutions is obtained.

1. Introduction
With the advancement of modernization, people’s consumption of electricity is gradually increasing.
Thermal power generation uses lots of coal for power generation, leading to severe atmospheric pol-
lution problems. The problem of how to increase boiler thermal efficiency and reduce pollutants has
become an urgent problem to be solved. Establishing an accurate combustion model is the premise of
optimization. However, the combustion of circulating fluidized bed boilers (CFBBs) has the character-
istics of nonlinearity, strong coupling, and pure lag [1]. Jagtap et al. [2] introduced the application of the
Markov probability method in boiler power generation reliability and used particle swarm optimization
(PSO) to optimize the combustion process. Santra et al. [3] researched the synthesis of dissipative fault-
tolerant cascade control for a class of singular networked cascade control systems with differentiable
and non-differentiable time-varying delays, and they ultimately confirmed the viability of the suggested
approach using a boiler-turbine unit from a power plant. Adams et al. [4] developed a deep neural net-
work based on least-squares support vector machine to predict pollutants such as SOx and NOx produced
in thermal power combustion. Even though these methods are effective, the calculations are complex,
making them challenging to apply in practical engineering.

Artificial neural network (ANN) technology has many advantages, such as strong nonlinear fitting
ability, good algorithm stability, strong self-learning ability, and good repeatability [5]. Therefore, ANN
technology has been successfully applied in many fields, such as sample classification [6], speech recog-
nition [7], intelligent control [8], and regression approximation [9]. However, ANN has problems such
as slow learning speed, low generalization ability, and easy to fall into local optimal, which limit its
use in some applications. Extreme learning machine (ELM) was proposed [10] in 2004. The ELM is a
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single hidden layer feedforward neural network [11], its input weights and hidden layer thresholds are
randomly set and remain unchanged during the processing of data samples, and the output weights are
obtained through the least-squares method [12]. Compared with the traditional ANN, ELM has a faster
operation speed and overcomes the problems of iterative calculation.

However, ELM also has some shortcomings, mainly including two aspects: the setting of the number
of hidden layer nodes and the randomly set input weights and hidden layer thresholds, which may lead
to the problems of low model accuracy and poor generalization ability. In order to solve these problems,
many scholars proposed some improved ELM models. For example, Zhu et al. [13] used a differential
evolution algorithm to select input weights and hidden layer thresholds. This method not only improved
the generalization ability of ELM but also made the model structure of ELM more compact. Cao et al.
[14] proposed an adaptive evolutionary extreme learning machine (SaELM), used an adaptive evolution-
ary algorithm to optimize the hidden layer node parameters of ELM, and achieved good generalization
ability. Matias et al. [15] proposed an optimized ELM, which used an optimization algorithm to optimize
the network structure and parameters of the ELM. In ref. [16], an improved PSO was proposed. It was
used to optimize the input weights and hidden layer thresholds of ELM, overcome the ill-conditioned
problem of ELM, and improve the compactness of the ELM.

All the above-improved ELM methods use an evolutionary algorithm to find the input weights and
hidden layer thresholds. Although the accuracy and generalization ability of the model were improved,
the evolutionary algorithm used in this high-dimensional optimization problem generally has the draw-
backs of fast convergence and is easy to converge into local optimization. The Kalman particle swarm
optimization (KPSO) [17] combines the Kalman filter principle into the PSO [18], which reduces the
number of iterations for the algorithm to find the global optimum in solving high-dimensional opti-
mization problems. After combining the principle of the Kalman filter, the optimization ability of PSO
has been improved, and it has been further improved and applied to practical engineering [19]. This
paper proposes an improved Kalman particle swarm optimization (IKPSO) for modeling the combus-
tion characteristics of CFBB. In IKPSO, the population is adaptively divided into a convergent state and
a divergent state in each search process, and then the individuals in the convergent state are corrected by
the Kalman filter principle. If the population has not updated the global best (gbest) for several gener-
ations, the entire population will be revised. By comparing with the other evolutionary algorithms, the
proposed algorithm obtains a more accurate model. Finally, multi-objective optimization is carried out
on the obtained model to increase the thermal efficiency of the boiler and reduce the concentration of
NOx.

The remaining sections of this paper are as follows: Section 2 introduces the fundamentals of ELM
and KPSO. Section 3 presents the proposed IKPSO algorithm. Section 4 lists the experiments and
analysis of the results. Section 5 provides a summary and outlook.

2. Related work
2.1. Extreme learning machine
As a variant of the ANN, the ELM does not require gradient-based backpropagation to adjust the weights
but sets the weights through the Moore–Penrose generalized inverse [20]. The standard ELM neural
network structure is shown in Fig. 1. For any N samples (xi, ti), xi = [xi

1, xi
2, · · · , xi

n]T ∈ Rn is the input
vector of the i sample, n is the number of input layer nodes, ti = [ti

1, ti
2, · · · , ti

l]
T ∈ Rl, l is the number

of output layer nodes. The number of hidden layer nodes is m, and the hidden layer activation function
is g(x). Input weights ω, hidden layer thresholds b, and output weights β are m × n, m × 1, and l × m
matrix, respectively. Then the mathematical model is as follows:

tk =
m∑

i=1

βigi(ω, b, xk) =
m∑

i=1

βigi(ωi · xk + bi), (k = 1, 2, · · · , N) (1)
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Figure 1. ELM network structure diagram.

which ωi is 1 × n, the weights of the input layer nodes and the i hidden layer node. xk is n × 1, the i th
input sample. βi is l × 1, the weights of the i hidden layer node and the output layer nodes. tk is l × 1,
output of the i sample. The above N equations can be abbreviated as:

Hβ = T (2)

H =

⎡
⎢⎢⎣

g(ω1x1 + b1) · · · g(ωmx1 + bm)

...
. . .

...

g(ω1xN + b1) · · · g(ωmxN + bm)

⎤
⎥⎥⎦

N×m

; β = [β1, β2, · · · βl]
T
l×m; T = [t1, t2, · · · tN]T

N×l (3)

H is called the hidden layer output matrix, β is the output layer weight matrix, and T is the expected
output. According to the least square norm solution of the above equation [21], it can be obtained that
β̂ = H†T , H† is the generalized inverse matrix of H.

2.2. Kalman particle swarm optimization
The principle of Kalman filtering makes an optimal estimate of the final state by referring to the pre-
dicted and observed values [22]. Specifically, given an observation Zt+1, KPSO is used to generate a
Gaussian distribution about the true state. The parameters mt+1 and Vt+1 of this multivariate distribution
are determined by the following equations:

mt+1 = Fmt + Kt+1(Zt+1 − GFmt) (4)

Vt+1 = (I − Kt+1)(FVtF
T + VX) (5)

Kt+1 = (FVtF
T + VX)GT(G(FVtF

T + VX)GT + VZ)−1 (6)

where F and VX describe the system transition model and process noise, while G and VZ describe the sys-
tem sensor model and observation noise [23]. The best estimate of the true state results from a Gaussian
distribution:

xt ∼ Normal(mt, Vt) (7)

KPSO prescribes particle changes entirely based on Kalman’s prediction principles. Every particle
has its mt, Vt, and Kt. The particles then generate observations with the following equation:

zv = φ(g − x); zp = x + zv; Z = (zT
p , zT

v ) (8)

where φ is uniformly extracted in the interval [0.2, 0.5]. Then mt and Vt are generated from the observa-
tions of Eqs. (4), (5), and (6). After the observations are determined, the optimal estimated state of the
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particle is obtained by Eq. (7). The new state of the particle is obtained by sampling this distribution,
and the position information of particles is extracted from xt+1. The system model parameters are set as
follows, where d is the individual dimension, and o is the individual vector [17].

F =
(

Id Id

0 Id

)
; VZ = diag(o); VX = diag(o); G = I2d (9)

3. Proposed method
3.1. KPSO using Cauchy distribution
Traditional KPSO uses complex computations when updating particle predictions and covariance matri-
ces, which can be time-consuming in practical engineering applications. In this paper, KPSO is improved
according to the calculation method of Kalman gain in ref. [19], and the Cauchy distribution is used to
generate the optimal estimate. The Cauchy distribution has the characteristics of no expectation and no
variance, and its probability density function is

f (x) = β

π
[
β2 + (x − α)

2
] , β > 0 (10)

where α is the position parameter that defines the peak position of the distribution, and β is the scale
parameter that defines the half-width at half the maximum value. There are two reasons for using the
Cauchy distribution function: (1) The existing KPSOs use a Gaussian distribution for optimal estimation,
and the velocity information of particles is used as the covariance matrix of the distribution. However, the
velocity information is directional, which does not meet the requirements of a positive definite covari-
ance matrix, and the calculation is also complex; (2) When using the Cauchy distribution function to
generate offspring, it has a certain probability of generating a mutation value. Due to the non-expectation
and non-variance nature of the Cauchy distribution function, mutation value is allowed, which increases
the diversity of the population in the search process and is more accommodating to search. In summary,
when using Cauchy distribution to generate offspring, the diversity of the population is enhanced and
the computational efficiency is improved.

3.2. Hierarchical division in KPSO search process
PSO was proposed by Eberhart and Kennedy in 1995 [24]. PSO is a swarm intelligence algorithm
designed by simulating the predation behavior of birds. There are food sources of different sizes in the
search space, and birds are tasked with finding the largest food source (gbest). Birds in the search process,
through mutual transmission of their information, cooperate to find the optimal solution. Essentially,
PSO finds gbest through an iterative process. In each iteration, each particle produces a new particle.
The newly generated particles are called the offspring, and the original particles are called the parents.

In the early stages of PSO search, it is intended that the particles in the population will diverge as
much as possible and enhance the global exploration capability. In the late search, particles need to
convergence as much as possible to enhance their local exploitation ability. In the proposed algorithm,
the distance between the parents and the offspring in each iteration is calculated, and the first �W ∗ N�
individuals are selected to be defined as the convergent state and the rest as the divergent state, where W
is the inertia weight, and N is the population size. The individuals in the convergence state are modified
to ensure the exploration and exploitation ability of the algorithm.

3.3. Overview of the proposed approach
The pseudo-code of the IKPSO is shown in Algorithm 1. Firstly, the PSO principle is used to generate
the offspring pops, and then the Euclidean distance dis between pops and pop is calculated. Secondly,
the population is divided into a convergence state and a divergence state according to the distance index,
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and the individuals in the convergence state are corrected by Kalman filtering. Finally, the number of
the stagnations of gbest is calculated. If the upper limit is reached, a Kalman filtering correction is
performed on the entire population.

3.4. Fitness function
As mentioned above, the input weights ω and hidden layer thresholds b of ELM are randomly set, and
they cannot be guaranteed that the model has good robustness. Aiming at this problem, the artificial
intelligence optimization algorithm is used to optimize the input weights and thresholds of ELM to
improve the robustness of the model.

In this paper, the IKPSO algorithm is used to optimize ω and b of ELM. Assuming that the
number of input nodes of ELM is n and the number of hidden layer nodes is m, the individual
dimension to be optimized is (n + 1) ∗ m. An optimization individual can be represented as αi =
[ω11, ω12, · · · , ω1n, · · · , ωmn, b1, · · · , bm], αi is the i individual to be optimized, where ωmn ∈ [−1, 1],
bm ∈ [0, 1]. The root mean square error (RMSE) function [25] between the output value of the model
and the target value is used as the fitness function, as shown in Eq. (11), which fit(αi) is the fitness value
of individual αi, Ntrain is the number of samples, and Yi and f (αi) are the true value and model output
value of the i sample, respectively.

fit(αi) =
√√√√ 1

Ntrain

Ntrain∑
i=1

(Yi − f (αi))
2 (11)

https://doi.org/10.1017/S026357472200145X Published online by Cambridge University Press

https://doi.org/10.1017/S026357472200145X


1092 Jing Liang et al.

ELM

Coal feeder(t/h) A
Load(%)

Coal feeder(t/h) B
Coal feeder(t/h) C
Coal feeder(t/h) D

Bed T(°C)
PAV(KNm3/h) Left

PAV(KNm3/h) Right
PAT(°C) Left

PAT(°C) Right
SAV(KNm3/h) Left I

SAV(KNm3/h) Left O
SAV(KNm3/h) Right I

SAV(KNm3/h) Right O
SAT(°C) Left

SAT(°C) Right
OC(%)

AMP (A)
AMP (B)

Exhaust gas T(°C)

Thermal 
efficiency (%)

NOx
emission (mg/m−3)

Figure 2. Simplified CFBB model.

(a) Determine the number of hidden nodes. (b) Test result box diagram. (c) The iterative curve of the algorithm.

(d) Fitting results of thermal efficiency. (e) Fitting results of NOx concentration. (f) The objective space of the solutions.

Figure 3. Figures of the experimental results.

4. Experiments and result analysis
4.1. Experiment simulation and parameter setting
The experimental data come from a 300 MWe CFBB in China. There are a total of 20 operational
parameters and 2 target parameters. A simplified CFBB model is shown in Fig. 2. Therefore, the number
of input layer nodes of the ELM is 20, and the number of output layer nodes is 2. The number of hidden
layer nodes is set to 80 by parameter verification, and the verification curve is shown in Fig. 3(a).

In order to verify the optimization ability of the proposed IKPSO algorithm, it is compared with PSO
[24], KPSO [23], OFA [26], and DE [13] on the CEC2017 benchmark functions [27] in Section 4.2. All
experiments are conducted 51 times independently, the dimension of the test functions is 100, the total
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Figure 4. Simplified CFBB model.

number of evaluations is 1000000, and the population size is set to 100. The experimental results are
verified by the Wilcoxon rank-sum test [28].

In Section 4.3, the proposed ELM based on IKPSO optimization (ELM-IKPSO) is compared with
ELM [10], ELM-PSO [16], ELM-OFA [26], and ELM-DE [13], respectively. The optimized ELM has
the same parameters. Because the number of hidden layer nodes is set to 80, according to the fitness
function setting in Section 3.4, the individual dimension to be optimized is α = 1680. The total evalu-
ation times of PSO, DE, OFA, and IKPSO are 80,000, and the population size is 100. The experiments
are run independently 51 times and simulated on Python 3.9. In order to prevent model overfitting, the
training data set is divided into a training set and a validation set, and the RMSE of the model on the
validation set is taken as the optimization goal. The structure diagram of the data set division is shown
in Fig. 4. Finally, the statistical test is performed by the Wilcoxon rank-sum test [28], and the confidence
level α [29] is set to 0.05. Finally, the proposed method is used for multi-objective optimization on the
established model to improve boiler thermal efficiency and reduce NOx emissions.

4.2. CEC2017 benchmark functions validation
In order to test the optimization ability of the algorithm using the Cauchy distribution, several evolu-
tionary algorithms are compared on the CEC2017 benchmark functions. KPSO is the original algorithm
using a Gaussian distribution function, and IKPSO is the improved algorithm using a Cauchy distribu-
tion function. Detailed experimental results are shown in Table I. The best results are shown in bold.
It can be seen from the experimental results that the optimization ability of the algorithm is improved
after using the Cauchy distribution function to generate the offspring, and IKPSO is superior to KPSO
in all 30 test functions. The reason is that the use of Cauchy distribution to generate offspring can make
the population find potential regions for development more quickly and make full use of computing
resources. From the comparison of KPSO and IKPSO with PSO, it can be concluded that the algorithm
using the Kalman filter principle improves the optimization ability of PSO. In addition, in comparison
with other types of evolutionary algorithms, OFA and DE, IKPSO is superior to the compared algo-
rithms in 23 and 20 functions, respectively. In summary, IKPSO is superior to the compared algorithms,
showing stronger optimization ability and generalization performance.

4.3. Model establishment and analysis
The detailed results of the modeling algorithms are shown in Table II. As shown in Table II, a com-
parison of the outcome metrics for ELM, ELM-PSO, ELM-OFA, ELM-DE, and ELM-IKPSO is listed.
For each algorithm, the best result is shown in bold font. For the training data, ELM-IKPSO has the
smallest performance metric, significantly outperforming the compared algorithms. For the test data, it
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Table I. Experimental results on the CEC2017 test functions.
Problem PSO KPSO OFA DE IKPSO
F1 1.0018e + 11 (1.47e + 10) − 6.1020e + 8 (7.43e + 8) − 4.6755e + 3 (1.51e + 3) = 3.5800e + 5 (1.02e + 5) − 6.7939e + 3 (6.23e + 3)
F2 3.3635e + 145 (1.59e + 146) − 5.5273e + 90 (2.71e + 91) − 1.4049e + 118 (2.71e + 118) − 8.0378e + 94 (3.35e + 95) − 4.7460e + 51 (2.32e + 52)
F3 3.4951e + 5 (5.63e + 4) − 1.9574e + 5 (3.03e + 4) − 4.9939e + 5 (2.99e + 4) − 4.7845e + 5 (5.00e + 4) − 7.6400e + 2 (3.25e + 2)
F4 1.3009e + 4 (3.35e + 3) − 3.6696e + 2 (6.27e + 1) − 2.5367e + 2 (4.51e + 1) = 2.3425e + 2 (2.25e + 1) + 2.7816e + 2 (4.23e + 1)
F5 1.0433e + 3 (7.01e + 1) − 8.3949e + 2 (1.11e + 2) − 1.0464e + 3 (2.97e + 1) − 9.1251e + 2 (2.58e + 1) − 3.3379e + 2 (9.52e + 1)
F6 7.9519e + 1 (6.76e + 0) − 6.8869e + 1 (4.92e + 0) − 2.1571e + 1 (3.13e + 0) − 6.7668e + 0 (1.09e + 0) − 5.4069e + 0 (1.39e + 0)
F7 2.6112e + 3 (2.30e + 2) − 3.5315e + 3 (3.80e + 2) − 1.1787e + 3 (2.10e + 1) − 1.0151e + 3 (1.91e + 1) − 3.6440e + 2 (4.23e + 1)
F8 1.1689e + 3 (6.74e + 1) − 9.0035e + 2 (9.48e + 1) − 1.0512e + 3 (1.98e + 1) − 9.1501e + 2 (2.00e + 1) − 2.9957e + 2 (5.59e + 1)
F9 3.7394e + 4 (4.99e + 3) − 5.1764e + 4 (7.53e + 3) − 2.5680e + 4 (5.35e + 3) − 1.1677e + 3 (3.82e + 2) = 2.1319e + 3 (1.77e + 3)
F10 2.1049e + 4 (1.21e + 3) − 1.5810e + 4 (1.46e + 3) − 3.0191e + 4 (5.79e + 2) − 3.0379e + 4 (4.74e + 2) − 1.2142e + 4 (1.45e + 3)
F11 9.0133e + 4 (2.11e + 4) − 2.3378e + 3 (1.37e + 3) − 2.4218e + 4 (4.21e + 3) − 1.8119e + 3 (1.98e + 2) − 1.2458e + 3 (2.17e + 2)
F12 1.6518e + 10 (6.46e + 9) − 1.3137e + 8 (6.51e + 7) − 7.7714e + 7 (4.04e + 7) − 6.6567e + 6 (2.11e + 6) + 3.0226e + 7 (1.18e + 7)
F13 6.1210e + 8 (7.54e + 8) − 5.5023e + 6 (1.12e + 7) − 3.3181e + 3 (1.60e + 3) + 1.0563e + 5 (2.77e + 4) − 7.5666e + 4 (2.89e + 4)
F14 2.1975e + 6 (1.62e + 6) − 6.2107e + 5 (2.89e + 5) − 3.0444e + 6 (6.82e + 5) − 1.1729e + 3 (2.15e + 2) + 1.0022e + 5 (4.11e + 4)
F15 4.0332e + 6 (8.08e + 6) − 1.0320e + 7 (4.54e + 7) − 1.1419e + 3 (5.92e + 2) + 3.1703e + 3 (4.34e + 2) + 6.3926e + 4 (2.59e + 4)
F16 7.4919e + 3 (1.14e + 3) − 5.5574e + 3 (8.76e + 2) − 8.6763e + 3 (3.65e + 2) − 8.6063e + 3 (3.89e + 2) − 2.5769e + 3 (5.72e + 2)
F17 6.3117e + 3 (1.37e + 3) − 4.4148e + 3 (5.05e + 2) − 5.4039e + 3 (2.34e + 2) − 5.3598e + 3 (2.89e + 2) − 2.3680e + 3 (4.78e + 2)
F18 3.0409e + 6 (2.95e + 6) − 9.7127e + 5 (3.99e + 5) − 5.3564e + 6 (1.03e + 6) − 6.5721e + 5 (1.49e + 5) − 2.6727e + 5 (9.27e + 4)
F19 1.7753e + 8 (2.47e + 8) − 5.2892e + 6 (1.80e + 6) − 8.2265e + 2 (5.84e + 2) + 6.5361e + 3 (1.57e + 3) + 2.9670e + 4 (8.17e + 3)
F20 4.0234e + 3 (6.06e + 2) − 3.4251e + 3 (4.31e + 2) − 5.0638e + 3 (3.24e + 2) − 5.3276e + 3 (2.41e + 2) − 2.2435e + 3 (5.19e + 2)
F21 1.7706e + 3 (1.64e + 2) − 1.4819e + 3 (1.45e + 2) − 1.2605e + 3 (3.84e + 1) − 1.1385e + 3 (2.72e + 1) − 5.0094e + 2 (4.77e + 1)
F22 2.2722e + 4 (1.52e + 3) − 1.8039e + 4 (1.47e + 3) − 3.0257e + 4 (4.09e + 3) − 3.1246e + 4 (4.75e + 2) − 1.4597e + 4 (1.33e + 3)
F23 3.0745e + 3 (3.06e + 2) − 2.6570e + 3 (2.00e + 2) − 1.5333e + 3 (2.67e + 1) − 1.4883e + 3 (3.12e + 1) − 8.5151e + 2 (6.15e + 1)
F24 4.5409e + 3 (5.72e + 2) − 4.7312e + 3 (3.77e + 2) − 1.8708e + 3 (2.36e + 1) − 1.7964e + 3 (2.80e + 1) − 1.2095e + 3 (5.31e + 1)
F25 7.5473e + 3 (1.11e + 3) − 9.3390e + 2 (9.36e + 1) − 8.3379e + 2 (3.57e + 1) − 7.1820e + 2 (4.64e + 1) + 7.9853e + 2 (4.71e + 1)
F26 2.8916e + 4 (2.87e + 3) − 3.0295e + 4 (3.42e + 3) − 9.8554e + 3 (5.17e + 3) = 1.1477e + 4 (1.29e + 3) − 6.6992e + 3 (1.54e + 3)
F27 2.6787e + 3 (6.16e + 2) − 3.6094e + 3 (8.39e + 2) − 1.0786e + 3 (6.38e + 1) − 7.6726e + 2 (5.37e + 1) = 7.4665e + 2 (4.79e + 1)
F28 1.1085e + 4 (1.97e + 3) − 7.0589e + 2 (6.23e + 1) − 6.6229e + 2 (2.34e + 1) − 6.8811e + 2 (1.59e + 2) = 6.1186e + 2 (2.96e + 1)
F29 1.1226e + 4 (2.48e + 3) − 7.0144e + 3 (7.70e + 2) − 6.5877e + 3 (2.17e + 2) − 6.7393e + 3 (3.41e + 2) − 2.8097e + 3 (4.69e + 2)
F30 1.1043e + 9 (6.56e + 8) − 2.9254e + 7 (1.27e + 7) − 2.5165e + 5 (3.14e + 5) + 4.8213e + 4 (1.36e + 4) + 5.6326e + 5 (2.49e + 5)
+/-/= 0/30/0 0/30/0 4/23/3 7/20/3
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Table II. Detailed RMSE results.

Wilcoxon
Algorithm Minimum Maximum Mean Variance rank-sum test

Train set ELM 1.652e-01 2.764e-01 2.020e-01 2.054e-02 +
ELM-PSO 1.140e-01 1.649e-01 1.345e-01 1.097e-02 +
ELM-DE 8.683e-02 1.579e-01 1.162e-01 1.855e-02 +
ELM-OFA 1.337e-01 1.747e-01 1.510e-01 1.069e-02 +
ELM-IKPSO 8.203e-02 1.315e-01 9.892e-02 9.306e-03

Test set ELM 3.446e-01 5.800e-01 4.407e-01 4.968e-02 +
ELM-PSO 2.969e-01 5.883e-01 4.054e-01 6.265e-02 +
ELM-DE 2.525e-01 5.204e-01 3.691e-01 5.915e-02 +
ELM-OFA 3.248e-01 6.383e-01 4.534e-01 6.136e-02 +
ELM-IKPSO 2.587e-01 4.632e-01 3.319e-01 4.607e-02

can be seen that although ELM-DE is similar to ELM-IKPSO in the minimum value, it is worse than
ELM-IKPSO in both mean and variance, which proves that ELM-IKPSO has better robustness and gen-
eralization ability. Therefore, ELM-IKPSO has good generalization performance, and the model built
by ELM-IKPSO is efficient. Figure 3(b) plots the boxplot of the five algorithms on the test set. From
the information in the box diagram, ELM-IKPSO achieves better statistical results. In addition, the four
optimized models are more obvious than the original ELM algorithm, which proves the importance of
the optimized ELM.

Figure 3(c) shows the iterative convergence diagram of different evolutionary algorithms in the opti-
mization process, where the horizontal axis is the number of fitness function evaluations, and the vertical
axis is the mean of the validation set results. It can be seen from the convergence curve that the OFA
converges too fast, and it is easy to converge to the local optimum in the CFBB modeling problem.
DE and PSO are better than OFA. After using the Kalman filter principle to correct PSO, the extra
number of fitness evaluations will be consumed in each iteration to find more potential regions and
prevent convergence to the local optimum. From the perspective of the search process, the IKPSO algo-
rithm is superior to the compared algorithms. Figure 3(d) and (e) shows the fitting effect on the test set.
Figure 3(d) shows the thermal efficiency fitting effect, and Fig. 3(e) shows the NOx fitting effect. The
blue star marks the actual data. In addition, it can be seen from the two simulation graphs that the output
values of ELM-IKPSO are close to the actual data. The model built by ELM-IKPSO is efficient.

Finally, the established model is multi-objective optimized to increase the boiler combustion effi-
ciency and reduce the NOx emission concentration. These two objectives are conflicting, and the
improvement of thermal efficiency is accompanied by an increase in NOx emission concentration.
Figure 3(f) is the optimized 22 groups of mutually non-dominated solutions. If NOx concentration needs
to be controlled below 80 mg∗Nm−3, decision manager can choose from the solution sets.

5. Conclusions
This paper proposed an extreme learning model based on IKPSO to establish the combustion model of
the CFBB. Aiming at some shortcomings of the existing KPSOs, the update method of Kalman gain
was improved to make it more suitable for the evolution process of the population. At the same time, in
the process of searching, the population was adaptively grouped hierarchically, and the individuals in
the convergent state were corrected. Compared with the other three algorithms, the model optimized by
the proposed algorithm showed better performance and generalization ability. Finally, multi-objective
optimization was carried out on the model, and a set of widely distributed non-dominated solutions was
obtained. Decision managers could choose the appropriate operation scheme according to the solutions.
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In future work, the proposed model will combine online learning methods and selectively update
the model when new data are obtained. We will also consider optimizing the model using time series
forecasting methods. In addition, the algorithm will be further improved to obtain more combustion
optimization solutions.
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