Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T12:09:31.476Z Has data issue: false hasContentIssue false

A polynomial approximation result for free Herglotz–Agler functions

Published online by Cambridge University Press:  17 October 2022

Kenta Kojin*
Affiliation:
Graduate School of Mathematics, Nagoya University, Furocho, Chikusaku, Nagoya 464-8602, Japan

Abstract

In this paper, we prove a noncommutative (nc) analog of Schwarz lemma for the nc Schur–Agler class and prove that the regular nc Schur–Agler class and the regular free Herglotz–Agler class are homeomorphic. Moreover, we give a characterization of regular free Herglotz–Agler functions. As an application, we will show that any regular free Herglotz–Agler functions can uniformly be approximated by regular Herglotz–Agler free polynomials.

Type
Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The author would like to take this opportunity to thank the “Nagoya University Interdisciplinary Frontier Fellowship” supported by JST and Nagoya University.

References

Agler, J., On the representation of certain holomorphic functions defined on a polydisk . In: Topics in operator theory: Ernst D. Hellinger memorial volume, Operator Theory: Advances and Applications, 48, Birkhäuser, Basel, 1990, pp. 4766.Google Scholar
Agler, J. and McCarthy, J. E., Pick interpolation and Hilbert function spaces, Graduate Studies in Mathematics, 44, American Mathematical Society, Providence, RI, 2002.CrossRefGoogle Scholar
Agler, J. and McCarthy, J. E., Global holomorphic functions in several non-commuting variables . Canad. J. Math. 67(2015), no. 2, 241285.CrossRefGoogle Scholar
Agler, J., McCarthy, J. E., and Young, N., Operator analysis Hilbert space methods in complex analysis, Cambridge University Press, Cambridge, 2020.CrossRefGoogle Scholar
Ambrozie, C.-G. and Timotin, D., A von Neumann type inequality for certain domains in ${\mathbb{C}}^d$ . Proc. Amer. Math. Soc. 131(2003), 859869.CrossRefGoogle Scholar
Anderson, J. M., Dritschel, M. A., and Rovnyak, J., Schwarz–Pick inequalities for the Schur–Agler class on the polydisk and unit ball. Comput. Methods Funct. Theory 8(2008), nos. 1–2, 339361.CrossRefGoogle Scholar
Augat, M. and McCarthy, J. E., Operator NC functions. Canad. Math. Bull., 1–17. 10.4153/S0008439522000339 Google Scholar
Ball, J. A., Marx, G., and Vinnikov, V., Interpolation and transfer function realization for the noncommutative Schur–Agler class . In: Operator theory in different setting and related applications, Operator Theory: Advances and Applications, 262, Birkhäuser/Springer, Cham, Switzerland, 2018, pp. 23116.10.1007/978-3-319-62527-0_3CrossRefGoogle Scholar
Herglotz, G., $\ddot{{U}}$ ber Potenzreihen mit positivem, rellen Teil im Einheitskreis. Ber. Verh. Sachs. Akad. Wiss. Leipzig 63(1911), 501511.Google Scholar
Kaliuzhnyi-Verbovetskyi, D. S. and Vinnikov, V., Foundations of noncommutative function theory, Mathematical Surveys and Monographs, 199, American Mathematical Society, Providence, RI, 2014.CrossRefGoogle Scholar
Knese, G. E., A Schwarz lemma on the polydisk. Proc. Amer. Math. Soc. 135(2007), no. 9, 27592768.CrossRefGoogle Scholar
Kojin, K., A refined NC Oka–Weil theorem. Canad. Math. Bull., 1–7. 10.4153/S0008439521000916 Google Scholar
Pascoe, J. E., Passer, B., and Tully-Doyle, R., Representation of free Herglotz functions . Indiana Univ. Math. J. 68(2019), no. 4, 1991215.CrossRefGoogle Scholar
Popescu, G., Free holomorphic functions on the unit ball of $B\left(\mathbf{\mathcal{H}}\right)$ . J. Funct. Anal. 241(2006), 268333.CrossRefGoogle Scholar
Popescu, G., Free holomorphic automorphisms of the unit ball of $B\left(\mathbf{\mathcal{H}}\right)$ . J. Reine Angew. Math. 638(2010), 119168.Google Scholar
Popescu, G., Holomorphic automorphisms of noncommutative polyballs . J. Operator Theory 76(2016), no. 2, 387448.CrossRefGoogle Scholar
Rudin, W., Real and complex analysis, 3rd ed., McGraw-Hill, Singapore, 1987.Google Scholar
Salomon, G., Shalit, O. M., and Shamovich, E., Algebras of bounded noncommutative analytic functions on subvarieties of the noncommutative unit ball . Trans. Amer. Math. Soc. 370(2018), no. 12, 86398690.CrossRefGoogle Scholar