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in a rotating microchannel

G.C. Shit1,†, A. Sengupta1 and Pranab K. Mondal2

1Department of Mathematics, Jadavpur University, Kolkata 700032, India
2Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering,
Indian Institute of Technology Guwahati, Guwahati 781039, India

(Received 27 September 2023; revised 4 January 2024; accepted 11 February 2024)

We investigate the linear stability analysis of rotating electro-osmotic flow in confined and
unconfined configurations by appealing to the Debye–Hückel approximation. Pertaining
to flow in confined and unconfined domains, the stability equations are solved using the
Galerkin method to obtain the stability picture. Both qualitative and quantitative aspects
of Ekman spirals are examined in stable and unstable scenarios within the unconfined
domain. Within the confined domain, the variation of the real growth rate and the transition
to instability are analysed using the modified Routh–Hurwitz criteria, employed for the
first time in this context. The stability of the underlying flow, characterized by the number
of roots with a positive real part, is determined by establishing a Routhian table. The
inferences of this analysis show that the velocity plane produces intriguing closed Ekman
spirals, which diminish in size with an increase in the rotation speed ω. The Ekman
spirals in the stable region exhibit a distinct discontinuity, indicating the dissipation of
disturbances over time. In the confined domain, the flow appears consistently stable for
a set of involved parameters pertinent to this analysis, such as electrokinetic parameter
K = 1.5 and rotational parameter ω approximately up to 6. However, the flow instabilities
become evident for K = 1.5 and ω ≥ 6.

Key words: instability control, rotating flows, microfluidics

1. Introduction

The electro-osmotic effect brings in precise control over the underlying flow of small
liquid volumes in various miniaturized applications, including lab-on-a-chip devices,
microfluidic sensors, bioanalytical systems, microbiological sensors, microelectro-
mechanical systems, and many more (Lyklema 1995; Long, Stone & Ajdari 1999; Ghosal
2002; Bahga, Vinogradova & Bazant 2010; Nam et al. 2015). It may be mentioned here
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that the electro-osmotic effect facilitates the flow control, requiring a lesser energy budget,
while realizing this actuation parameter in practice does not involve the cumbersome
system to be integrated with the small-scale fluidic circuit/device (Brask, Goranovic
& Bruus 2003; Brask et al. 2005). Kemery, Steehler & Bohn (1998) have conducted
extensive research efforts to investigate several facets of electro-osmotic flow in different
microfluidic configurations, encompassing diverse physical and geometric conditions. To
this end, a number of experiments have also been conducted by leveraging electro-osmotic
effects in centrifugal microfluidic systems, typically in the multiple enzymatic assays
(Duffy et al. 1999).

It is worth mentioning here that pertaining to rotational flows in lab-on-a-chip-based
centrifugal microfluidic systems/devices, used largely in medical diagnostics, biochemical
analysis and laboratory instruments cooling, the deployment of electro-osmotic effect
offers a few distinctive features, namely noise-free operation, minimally invasive actuation
process, and a greater degree of flow controllability, to name a few (Ajdari 1995,
1996; Chakraborty 2006; Mondal et al. 2013; Barimani, Jamei & Abbasi 2022). Despite
having such inevitable beneficial aspects of the electro-osmotic effect, employment of
this flow actuation parameter in rotational platforms leads to a few problematic facets,
including a stability issue of the underlying flow (Zhang et al. 2013). Probing into
the stability threshold of rotational flows in the presence of electrokinetic actuation
seems to be of vital importance, attributed primarily to many implications of this
characteristic feature on the prevailing transport (Chang & Wang 2011). As witnessed in
the reported observations by Posner & Santiago (2006), the onset of instability in rotational
force-modulated microscale flows under electrokinetic influences promotes solute mixing
quite promisingly. Nevertheless, in electro-osmotic flow, the transition to instability in
many cases severely disturbs the underlying transport in the rotating platform, and at times
becomes vulnerable for the efficient operation of rotational fluidic systems typically used
in biochemical/biomedical applications (Song et al. 2017; Sengupta et al. 2019). It may be
mentioned here that a few studies are reported in the literature wherein the influence of the
electro-osmotic effect on the stability picture of non-rotating microscale flows has been
discussed aptly (Suresh & Homsy 2004; Ray et al. 2012).

A substantial application of electrokinetically assisted rotational flow in different
state-of-the-art systems, together with the basic interest of unravelling the intricate
behaviour of the electro-osmotic effect in triggering instability of rotational flows, indeed,
demands a comprehensive stability analysis of rotating electro-osmotic flows. For rotating
systems, in addition to the forcing due to the centrifugal effect, the Coriolis force alters the
flow velocity, and consequently the fluid flux, considerably (Kaushik et al. 2019; Siva et al.
2020). Specifically, rotation-induced forcing, i.e. centrifugal force and the Coriolis force,
plays a significant role in shaping the flow dynamics (Kaushik, Mondal & Chakraborty
2017b; Gandharv & Kaushik 2022). The underlying effect, influenced by the electrical
double layer phenomenon, affects the flow dynamics non-trivially, including the onset of
flow instability through the formation of vortices (Abhimanyu et al. 2016). Considering all
the aspects above, stability analysis of rotating electro-osmotic flow could be an interesting
yet practical proposition, which remains unexplored in the literature until the present work.

Here, we consider the effect of channel rotation on the stability analysis of
electro-osmotic flow under the influence of electrical forcing that stems from the
electrical double layer effect. Our analysis pertains to the framework of the Debye–Hückel
approximation, while the validity of this approximation is justified by invoking the relation
between surface charge density (σ ) and the zeta potential (ζ ) (Ganchenko et al. 2015).
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Stability analysis of electro-osmotic flow

We consider a dilute aqueous solution of symmetric electrolyte in order to neglect the
Joule heating effect from the underlying stability analysis of this work (Mayur, Amiroudine
& Lasseux 2012). We perform the stability analysis for the flow over a single plate
(unbounded domain) and the flow bounded by two parallel plates using the Galerkin
approximation (Reza & Gupta 2012). Quite notably, for the first time, we establish as
well as use the modified Routh–Hurwitz criteria (Anagnost & Desoer 1991) to investigate
the transition of the flow from stability to instability modes. We mention briefly here that
the Routh–Hurwitz criteria serve as a mathematical test to determine the signs of the real
parts of the zeros of a polynomial. In § 3.2.2 of this paper, this criterion is utilized to verify
analytically the stability of the flow for a specific range of electrokinetic parameter K and
rotation number ω. By employing the Routh–Hurwitz criteria, a thorough assessment of
the flow stability is achieved, validating the numerical results with analytically verified
solutions.

2. Mathematical model and flow configuration

We consider the electro-osmotic flow of an incompressible viscous fluid under the
influence of rotation-induced forces through two different configurations, depicted
in figure 1. We consider the Cartesian coordinates (x′, y′, z′) to represent the flow
configurations, as shown schematically in figure 1. The velocity field u′ = (u′, v′) is taken
along the x′–y′ plane. We assume that the entire system rotates along the z′-axis with
angular velocity Ω = (0, 0,Ω). The external electric field, which is applied along the
x′-direction, together with the rotational forcing, drives the flow in the positive x′-axis. For
both configurations, we consider height along the z′-axis, width along the y′-axis, and the
length spans the x′-axis.

The transport equations governing the electro-osmotic flow dynamics are the
Poisson–Boltzmann equation for the potential distribution and the Navier–Stokes system
of equations for the flow field.

Let Ψ be the potential distribution due to the electrical double layer (EDL). The EDL
potential is governed by the Poisson–Boltzmann equation (Gouy 1910; Chapman 1913;
Probstein 2005)

d2Ψ

dz′2 = −ρe

ε
, (2.1)

where ε is the electrical permittivity of the electrolyte solution under consideration,
and ρe is the net charge density. Note that ρe = 2C0ez sinh(ezΨ/KBT), where e is the
fundamental electric charge, C0 is the concentration of the bulk electrolyte, z is the
valency of ions, KB represents Boltzmann’s constant, and T is the absolute temperature.
Substituting the expression for ρe in (2.1), we obtain the equation for EDL potential as

d2Ψ

dz′2 = 2zeC0 sinh
(

zeΨ
KBT

)
. (2.2)

For zeΨ/KBT � 1, one may write sinh(zeΨ/KBT) ≈ zeΨ/KBT , and this approximation
is known as the Debye–Hückel approximation. Considering the surface charge density
for glass (σ = 10−3 C m−2), the Gouy–Chapman relation between surface charge density
and zeta potential is given by the relation σ = 2

√
2 εΦ̂/k−1 sinh(ζ/2Φ̂) (Ganchenko

et al. 2015; Demekhin et al. 2016). The calculation of ζ from the above relation for
κ−1 = 200 nm and Φ̂ = 25 mV gives the value ζ = 0.012 mV (� 25 mV). As is evident,
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Figure 1. Schematic diagram depicting the geometry of the electro-osmotic flow (a) over a flat infinite plate
and (b) in a region bounded by two parallel plates. The external electric field E is being applied along the
x′-direction. The entire system is being rotated about the vertical axis, i.e. the z′-axis.

the calculated value of ζ is considerably less than the threshold value of the zeta potential.
This order analysis underscores the applicability of the Debye–Hückel approximation
pertaining to the present analysis (Masliyah & Bhattacharjee 2006).

By appealing to the Debye–Hückel approximation, we have the following equation that
describes the potential, derived from (2.2):

d2Ψ

dz′2 = κ2Ψ, (2.3)

where κ denotes the inverse Debye length, defined by κ =
√

2z2e2C0/εKBT . Equation
(2.3) can be solved subject to the boundary conditions

Ψ = ζ at z′ = 0 and Ψ → 0 as z′ → ∞, (2.4a,b)

where ζ is the zeta potential at the solid surface.
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The Navier–Stokes equations and the equation of continuity for an incompressible fluid
flow are written as

ρ

(
∂u′

∂t′
+ u′ · ∇u′ + 2Ω × u′

)
= f − ∇P + μ∇2u′, (2.5)

∇ · u′ = 0, (2.6)

where ρ is the fluid density, μ is the dynamic viscosity, u′ is the velocity vector, f is the
body force, and P = p − ρ/2|Ω × r′|2, with r′ = (x′, y′, z′) the modified pressure (Zheng
& Jian 2018). We assume that no pressure gradient exists other than the centrifugal force.
The body force for the flow is given by

f = (−ρeE, 0, 0), with ρe = −ε d2Ψ

dz′2 , (2.7)

where ρe is the charge density of the electrolyte solution, and E is the constant electric field
being applied along the x′-direction. For an infinite plate, one may consider solutions in the
form u′ = u′(z′, t′) and v′ = v′(z′, t′). In this analysis, we investigate the stability analysis
of purely electro-osmotic flow, and we do not consider any applied pressure gradients in
the chosen configuration. However, the prevailing centrifugal forcing owing to the channel
rotation develops a pressure gradient in the flow field, and this has been considered in the
modified pressure gradient term that acts along the axial (x′) direction. The axial pressure
gradient, which is assumed to be almost constant across a long microchannel, has also
been ignored, considering its minuscule effect in comparison to the electrical forcing. We
have considered the width of the channel to be large (pseudo-two-dimensional analysis –
here, we did not consider the confinement effect), and the Coriolis force modulated
induced pressure gradient along the y′-axis is trivially small. As such, it is because of
this small induced pressure gradient along the y′-axis that we did not consider induced
pressure gradient along the z′-axis as well. Accounting for these assumptions, which have
been considered in seminal works of this paradigm (Kaushik, Mandal & Chakraborty
2017a; Kaushik et al. 2019), we did not consider induced pressure gradients along the y′-
and z′-directions of this analysis. Consequently, the solution for the velocity components
u′ and v′ (induced due to the Coriolis force) in the long microchannel has been sought
to be dependent on z′ and t′. Consistent with the assumptions made in this analysis, and
by neglecting the convective and pressure gradient terms, the componentwise momentum
transport equations obtained from (2.5) read as

ρ
∂u′

∂t′
− 2ρΩv′ = εE

d2Ψ

dz′2 + μ
d2u′

dz′2 , (2.8)

ρ
∂v′

∂t′
+ 2ρΩu′ = μ

d2v′

dz′2 , (2.9)

with the boundary conditions given as

u′ = 0 at z′ = 0 and z′ → ∞. (2.10)

It is worth mentioning here that upon neglecting the electrical body force in
the momentum transport equation, the effect that arises due to the formation of
the EDL phenomenon can be taken into account through the employment of the
Helmholtz–Smoluchowski slip velocity at the wall. Such a consideration is valid only
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in the limit of thin EDL cases (Bahga et al. 2010). Our study employs a generic
approach, i.e. incorporation of the electrical body force in the transport equation (2.8),
suitable for both thin and thick EDL scenarios. We justify this approach by noting
that surface hydrophobicity boosts electro-osmotic flow, typically modelled through the
implementation of a Navier-slip boundary condition at the fluid–solid interface. Past
research has shown that uncharged hydrophobic patches on channel walls can intensify
electro-osmotic flow velocity, emphasizing the role of the Navier-slip condition in
enhancing flow velocity (Bahga et al. 2010; Zhao 2010; Belyaev & Vinogradova 2011;
Dehe et al. 2020). Also, it is evident from the literature that surface charge significantly
reduces the hydrophobicity on that particular portion of the wall due to the mobile ions
(Ajdari & Bocquet 2006; Maduar et al. 2015; Xie et al. 2020). In this analysis, we consider
a uniformly charged wall, and the maximum value of slip length on such a uniformly
charged wall would be approximately 40 nm (Xie et al. 2020), leading to an overall
enhancement of electro-osmotic flow velocity by a factor (1 + 40κ), where κ is the inverse
of the EDL thickness in nm. Pertaining to this analysis, κ−1 or λD = 200 nm, hence
the slip-modulated velocity enhancement factor becomes 1.2. Accounting for this trivial
enhancement factor of electro-osmotic flow velocity, we did not consider slip velocity on
the surface in the underlying analysis.

3. Analysis of rotating electro-osmotic flow

3.1. Flow dynamics and stability in an unbounded domain

3.1.1. Dimensionless equations
We make an effort to cast (2.3), (2.5) and (2.6) into their dimensionless counterparts.
Normalizing lengths by 1/κ , Ψ by ζ , the velocity components by εEζ/μ, and time by
ρ/μκ2, we obtain the dimensionless forms of (2.3), (2.8) and (2.9) as

∂2ψ

∂z2 = ψ, (3.1)

∂2u
∂z2 − ∂u

∂t
+ 2

Re
Ro
v = −∂

2ψ

∂z2 , (3.2)

∂2v

∂z2 − ∂v

∂t
− 2

Re
Ro

u = 0. (3.3)

The dimensionless numbers appearing in (3.2) and (3.3) are Re = U0ρ/κμ, the
Reynolds number, and Ro = U0κ/Ω , known as the Rossby number (Aurnou, Horn &
Julien 2020). The term U0 appearing in the definitions of Re and Ro is called the
Helmholtz–Smoluchowski velocity.

Using the boundary conditions ψ(0) = 1 and ψ(∞) = 0 for the dimensionless EDL
potential ψ , the solution to (3.1) has the form

ψ = e−z. (3.4)

The following boundary conditions govern the flow field:

u = 0 at z = 0 and u → 0 when z → ∞. (3.5)
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Stability analysis of electro-osmotic flow

3.1.2. Linear stability analysis
We consider the solutions of (3.2) and (3.3) in the form (Chandrasekhar 2013)⎡

⎣ u(z, t)
v(z, t)
ψ(z, t)

⎤
⎦ =

⎡
⎣ û(z)
v̂(z)
ψ̂(z)

⎤
⎦ exp(iαz − βt), (3.6)

where û, v̂ and ψ̂ respectively denote the amplitudes of velocities and dimensionless EDL
potential. Here, α is the wavenumber along the z-direction, and β is the complex growth
rate. Henceforth, the ‘hat’ ( ˆ) symbol has been omitted from the dimensionless variables
for ease of presentation.

On substituting (3.6) into (3.2) and (3.3), we obtain the equations

ψ ′′ + 2iαψ ′ − (α2 + 1)ψ = 0, (3.7)

u′′ + 2iαu′ + (β − α2)u + 2ωv + ψ = 0, (3.8)

v′′ + 2iαv′ + (β − α2)v − 2ωu = 0. (3.9)

Here, the prime (′) represents the derivative with respect to z. We denote ω = η2 =
Ωρ/κ2μ = Re/Ro, where the parameter η is defined as the measure of the thickness of
EDL relative to the depth of the Ekman layer. Precisely, we have η = λD/Lk, where λD is
the Debye length, and Lk (= (μ/ρΩ)1/2) is defined as the Ekman depth (Chang & Wang
2011).

Let us take χ(z) = û(z)+ i v̂(z), where χ is defined as the complex velocity function.
By using this complex velocity function χ in (3.8) and (3.9), we get the equation

χ ′′ + 2iαχ ′ + m2χ = 0, (3.10)

where m2 = β − α2 − 2iω.
The boundary conditions used for solving (3.10) are

χ(0) = 0 and χ(∞) = 0, (3.11a,b)

and
ψ(0) = 1 and ψ(∞) = 0. (3.12a,b)

Now the solution of (3.10) subject to the boundary conditions described in (3.11a,b) is
obtained as

χ = 1
1 − p + m2

(
exp

(
−z/2

(
p +

√
−4m2 + p2

))
− exp(−z)

)
. (3.13)

3.1.3. Generalized flow analysis
In order to investigate the general flow analysis, we first resolve χ into its real and
imaginary parts:

û = Re(χ) = e−az (cos(bz) (1 + β − α2)+ 2(α + ω) sin(bz))− e−z (1 + β − α2)

(1 + β − α2)2 + 4(α + ω)2

(3.14)
and

v̂ = Im(χ) = e−az (2(α + ω) cos(bz)− (1 + β − α2) sin(bz))− 2(α + ω) e−z

(1 + β − α)2 + 4(ω + α)2
. (3.15)
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In this context, û is called the axial electro-osmotic velocity in the axial direction of the
applied external electric field, while v̂ is the electro-osmotic flow velocity in the transverse
direction. The quantities a and b in (3.14) and (3.15) are defined in the form

a =
√
β − α2 + |m2|

2
and b =

√
−(β − α2)+ |m2|

2
. (3.16a,b)

For α = 0 and β = 0, the Ekman spiral curve coincides with the reported results (Chang
& Wang 2011). However, the generalized flow analysis for the case β /= 0 is our aim in this
work.

3.1.4. Analysis of the Ekman spiral flow by Galerkin approximation
We consider two cases.

Case A: consider α = 0 and β = 0.
It is known that an Ekman spiral refers to wind or current structures that are developed

near a horizontal boundary. As one moves away from the boundary region, the direction
of the flow deviates from the external forcing and rotates gradually. Generally, the
transport of volume associated with the Ekman spiral occurs in the right-hand direction
towards the northern hemisphere. However, in the case of electro-osmotic flow, the Ekman
spirals exhibit different characteristics. The direction of the volume transportation of
electro-osmotic flow is essentially dependent on ω as depicted in figure 2. The Ekman
spirals obtained in this scenario are observed as closed curves, and as the value of ω
increases, the area enclosed by the curves tends to decrease. Notably, each closed curve
originates from the origin (z = 0). As z increases, the u-component swirls along the
positive x-axis, while the component v swirls along the negative y-axis. When u reaches its
maximum value, the spiral changes direction until the −v velocity reaches its maximum.
Following this, the magnitudes of both u and v begin to decrease, eventually spiraling back
towards the origin as witnessed in figure 2.

We rewrite (3.7) and (3.10) as

ψ ′′ + pψ ′ − qψ = 0 (3.17)

and

χ ′′ + pχ ′ + m2χ + ψ = 0, (3.18)

where q = α2 + 1. Equations (3.17) and (3.18) along with the boundary conditions
(3.11a,b) and (3.12a,b) are solved using Galerkin approximation. We approximate the
functions χ(z) and ψ(z) by a finite series that can be obtained from a complete
continuous set of linearly independent functions χn(z) and ψn(z). The functions are
approximated in such a way that they satisfy the boundary conditions. We take the
following approximations for χ and ψ :

χ(z) =
N∑

n=1

an χn(z),

ψ(z) =
N∑

n=1

bn ψn(z),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.19)
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Figure 2. When considering a single plate, the Ekman spirals exhibit different closed spirals in the steady state
corresponding to different values of ω. Regardless of the value of ω, closed spirals are obtained consistently.
However, as the value of ω increases, the area enclosed by these spirals gradually shrinks in size.

where an and bn are constants. For the sake of mathematical simplicity, we consider n = 2
and the following basis functions for χn(z) and ψn(z):

χ1(z) = z e−z, χ2(z) = z2 e−z, (3.20a,b)

and
ψ1(z) = e−z, ψ2(z) = e−2z. (3.21a,b)

The relevant equations (3.20a,b) and (3.21a,b) are substituted in (3.17) and (3.18). The
residuals are obtained in each case. The sets of coefficients an and bn are determined
using the fact that each residual is orthogonal to the set of trial functions over the selected
domain. The integral formulation can be written as∫ ∞

0
χn(z)R1 dz = 0 and

∫ ∞

0
ψn(z)R2 dz = 0 (n = 1, 2), (3.22a,b)

where R1 and R2 are the respective residues. Equations (3.22a,b) lead to a homogeneous
system of linear equations with four unknowns. The necessary condition for the existence
of a non-trivial solution gives rise to the approximated equation

0.0016(1.6 + m4 + 1.32α2 − 5.33β + 5.33α2 + 10.66iω + 4iαβ − 4iα3 + 8αω)

× (β − α2 − 2iω − 2.5α2 + 0.5α4 − 3iα + 3iα3) = 0. (3.23)

This equation is solved numerically to obtain the values of α for which the flow is either
stable or unstable. Consequently, the nature of the Ekman spirals is analysed in the stable
and unstable regions.

Case B: we analyse Ekman spirals in unstable and stable regions.
In the unstable region, the Ekman spirals are closed curves that initiate from the origin.

In the unstable region, as the value of ω increases in the range ω < 1, the area enclosed
by the Ekman spirals also increases, and the spirals gradually shift towards the left.
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Figure 3. Unstable Ekman spirals: (a) when ω ≤ 1, (b) when ω > 1. Closed Ekman spirals initiating from
the origin are obtained in unstable cases as well. The deviation of the spirals towards the left is substantially
smaller when ω > 1 compared to when ω ≤ 1.
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Figure 4. In the case of stable flow, the Ekman spirals are broken curves with the origin as the initiation point.
(a) A prominent discontinuity is observed for smaller values of ω. (b) As ω increases, the discontinuity in each
Ekman spiral diminishes. For ω = 1, the discontinuity in the Ekman spiral is shown in an inset.

On the other hand, when ω > 1, the Ekman spirals continue to shift towards the left as
the value of ω increases. However, the area enclosed by the spirals becomes smaller with
increasing values of ω. The maximum enclosed area is obtained at ω = 1. By comparing
figures 3(a) and 3(b), it is apparent that the deviation of the Ekman spirals in the leftward
direction is considerably smaller for ω ≥ 1 compared to ω < 1.

In the stable region (when Re(β) > 0), the behaviour of the Ekman spirals differs
from that in the unstable region, as can be seen in figure 4. In the stable region,
the Ekman spirals appear as broken curves that initiate from the origin. As the
value of ω increases, the discontinuity or ‘cut’ present in the broken spiral gradually
diminishes, but a closed curve is never formed. Additionally, with an increasing value
of ω, the area covered by the curve also reduces, and finally, the discontinuity or
‘cut’ in the spiral moves closer to the origin. As ω → ∞, both axial and lateral
electro-osmotic flow velocities become negligible. This observation indicates that as ω →
∞, the system behaves like a rigid body, where the fluid motion becomes significantly
restricted.
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Stability analysis of electro-osmotic flow

3.1.5. Physical significance of the Ekman spirals
We introduce the rotational parameter ω, defined as the ratio of the Reynolds number Re
to the Rossby number Ro. A small Rossby number Ro indicates a strong Coriolis force.
Given the relationship ω = Re/Ro, the influence of the Coriolis force becomes more
dominant compared to the viscous force of the fluid with the increasing values of ω in
the regime ω > 1. Consequently, the Ekman spirals become more tightly confined and
shrink in size with increasing ω. Conversely, ω < 1 signifies a weaker Coriolis force, and
in this regime, the viscous force predominates, resulting in disorganized and shifting spiral
patterns. However, in the case of stable flow, where perturbations and disturbances have
reduced impact, the Ekman spirals align almost perfectly, as depicted in figure 4.

The Ekman spiral curves obtained in both stable and unstable regions hold physical
significance, as the curves arise due to the Coriolis effect. The distinction between
‘complete’ and ‘broken’ Ekman spirals reflects the persistence or decay of disturbances
developed owing to the Coriolis force. In the unstable region, the closed curves of the
Ekman spirals suggest that the disturbances developed by the Coriolis effect persist
indefinitely and spiral along the closed curves. This implies that the influence of the
Coriolis force continues to shape the flow patterns in the unstable region. In the stable
region, it is observed from figure 4 that the Ekman spirals do not form closed curves and
consist of a discontinuity or ‘cut’ near the origin. The extent of discontinuity, equivalently
opening of the ‘cut’, reduces in size with the increasing value of ω, as illustrated in
figures 4(a) and 4(b). This observation signifies that as the value of ω increases, the
disturbance being developed also increases. Consequently, the ‘cut’ opening decreases,
implying that the disturbances die out beyond a certain period of time.

3.2. Flow dynamics and stability in a bounded domain
Now we consider the flow through a microchannel of height 2H bounded between two
parallel plates. The electro-osmotic flow of electrolyte solutions is governed by (2.8) and
(2.9), while (2.3) governs the electrical potential function. Here, we normalize the lengths
by H instead of 1/κ . The dimensionless equation for EDL potential obtained from (2.2) is
then given by

∂2ψ

∂z2 = β∗ sinh(α∗ψ), (3.24)

where β∗ = H2κ2/α∗, and α∗ = zeζ/KBT . The term α∗ is called the ionic energy
parameter. For electrolytic systems having low surface zeta potential (�25mV) at 25 ◦C,
we have α∗ < 1 (Mayur et al. 2014). In such a situation, the Debye–Hückel approximation
is applicable, which reduces (3.24) to

∂2ψ

∂z2 = K2ψ, (3.25)

where K = κH is said to be dimensionless electrokinetic width, also known as the
electro-osmotic parameter. The normalized momentum transport equations are

∂2u
∂z2 − ∂u

∂t
+ 2ωv = −∂

2ψ

∂z2 , (3.26)

∂2v

∂z2 − ∂v

∂t
− 2ωu = 0, (3.27)
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where ω = Re/Ro = ΩH2ρ/μ, and Re = ρU0H/μ, Ro = U0/ΩH. Here, we define ω as
a dimensionless parameter known as the rotational Reynolds number (Murthy 1987). In
this analysis, Ω is not dependent on the EDL thickness but is a measure of fluid transport
due to a rotation by virtue of the viscous effect.

For the analysis, we have assumed specific ranges of pertinent parameters: ω =
0.1, 1.0, 10, and K = 1.5, 10, 20. These values were chosen based on the physical
properties of the electrolyte solution and dimension of the fluidic configuration, such
as the channel half-height H, which is taken within the range 500 nm–10 µm, λD of
the order of 102 nm (Dutta & Beskok 2001), and Ω ranging from 100 to 1000 rps. For
instance, when H is set at 4 µm, λD is set at 200 nm, and Ω varies from 100 to 1000 rps,
the corresponding values are calculated as K = 20 and ω = 10. Analogously, similar
estimations were performed for the other parametric values. It may be mentioned here
that for the bounded flow configuration, we consider channel half-height H to define the
electrokinetic parameter K (= κH = H/λD). Theoretically, K = 1 is a case signifying the
onset of EDL overlap for the present analysis. However, the minimum value of K (= 1.5),
as considered in this analysis, suggests that the channel half-height is larger than the EDL
thickness. Taking this into account, we opted not to consider the phenomenon of EDL
overlapping in this work.

3.2.1. Linear stability analysis
We assume that the normal mode solutions to (3.25), (3.26) and (3.27) are taken in the
form ⎡

⎣ u(z, t)
v(z, t)
ψ(z, t)

⎤
⎦ =

⎡
⎣ û(z)
v̂(z)
ψ̂(z)

⎤
⎦ exp(iαz − βt), (3.28)

where α is the wavenumber along the z-direction and β is the growth rate (which can be a
complex quantity). Substituting these modes into (3.25), (3.26) and (3.27), and considering
χ = û + iv̂, we obtain the equations

χ ′′ + aχ ′ + bχ + K2ψ = 0 (3.29)

and

ψ ′′ + aψ ′ − Lψ = 0. (3.30)

The corresponding boundary conditions are defined as

χ(±1) = 0 and ψ(±1) = 1, (3.31a,b)

where a = 2iα, b = β − α2 − 2iω and L = K2 + α2, and we rewrite ψ̂ as ψ by dropping
the hat symbol.

The relevant equations (3.29) and (3.30), along with the boundary conditions (3.31a,b),
are solved using a Galerkin approximation method as adopted in Reza & Gupta (2012)
and Shivakumara et al. (2012). The functions χ(z) and ψ(z) are approximated by a finite
series obtained from a complete continuous set of linearly independent functions χn(z)
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Stability analysis of electro-osmotic flow

and ψn(z). We take the following approximate solutions for χ and ψ :

χ(z) =
n=N∑
n=1

an χn(z),

ψ(z) =
n=N∑
n=1

bn ψn(z),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.32)

where an and bn are constants, and χn(z) and ψn(z) denote the sets of basis functions
satisfying the respective boundary conditions. We choose

χ1(z) = z(1 − z2), χ2(z) = (1 − z2)2 (3.33a,b)

and
ψ1(z) = z4, ψ2(z) = z2. (3.34a,b)

On substituting the approximated solutions (3.33a,b) and (3.33a,b) into (3.29) and (3.30),
residuals are obtained in each case. The sets of coefficients an and bn can be obtained by
using the fact that each residual is orthogonal to the set of trial functions over the selected
domain. The integral formulation of the Galerkin approximation for χn(z) and ψn(z) can
be written as ∫ 1

−1
χn(z)R1 dz = 0, n = 1, 2, (3.35)

and ∫ 1

−1
ψn(z)R2 dz = 0, n = 1, 2, (3.36)

where R1 and R2 are the respective residues.
Equations (3.35) and (3.36) lead to a homogeneous system of linear equations in four

unknowns. The necessary condition for the existence of a non-trivial solution gives rise to∣∣∣∣∣∣∣
−1.6 + 0.152b −0.609a 0 0

0.609a 0.812b − 2.438 0.051K2 0.152K2

0 0 3.428 − 0.222L −0.285L + 0.8
0 0 4.8 − 0.285L 1.33 − 0.4L

∣∣∣∣∣∣∣ = 0. (3.37)

On expanding (3.37), we obtain the following approximated biquadratic equation in K as

L2(0.0295 + 0.0028a2 − 0.0126b + 0.0009b2)− L(0.2673 + 0.0249a2 − 0.1123b + 0.008b2)

+ (2.76411 + 0.2628a2 − 1.1832b + 0.0874b2) = 0, (3.38)

where K is the dimensionless electrokinetic width, a = 2iα, b = β − α2 − 2iω and L =
K2 + α2. Equation (3.38) consists of both real and imaginary parts. However, the physical
definition of K requires that K must be real. Hence the solution of (3.38) for a fixed
value of ω is considered by taking the absolute value of K. This consideration is valid
because in (3.29), χ = û + iv̂ represents complex velocity potential. The plot of |K| versus
α, as depicted in figure 5(a), illustrates the neutral stability curve with respect to the
parameter K for the complex velocity potential. As β = βr + iβi, we consider the case
of direct bifurcation when βr = βi = 0. In this situation, (3.38) can be solved to get the
neutral curve with respect to the parameter K for complex velocity potential with different
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Figure 5. (a) Neutral stability curve for K versus α with different values of ω. The neutral stability curve
separates the regions of stability and instability of fluid flow. In this illustration, the stable region exhibits
on the lower side of each neutral stability curve, while the upper side corresponds to the unstable region.
As the value of ω increases, the instability region increases. (b) Comparison of the numerical results by
taking a singular-term Galerkin approximation, a two-point Galerkin approximation and a three-point Galerkin
approximation when ω = 10.

values of ω. From figure 5(a), we observe that with an increase in ω, the regions of both
stable and unstable zones change significantly. To ascertain the accuracy of our results,
we conducted analyses using one, two and three basis functions within the Galerkin
expansion framework. Our findings indicate that the outcomes derived from employing
two and three basis functions are closely aligned. However, as witnessed in figure 5(b),
there is a noticeable discrepancy in the results when considering only a singular term
in the Galerkin approximation. A comparative illustration of these results is presented
in figure 5(b). While the inclusion of three basis functions provides rigorous insights, the
associated computational complexities prompted us to utilize a more streamlined approach
with two basis functions for the present analysis.

Figures 6(a) and 6(b) plot the variation of real growth rate βr versus wavenumber α
for different values of K, obtained at ω = 1 and 10, respectively. It is worth mentioning
that pertaining to the case ω = 1, no instability is observed for K = 1.5. This observed
behaviour can be attributed to a relatively lower strength of rotational forcing for ω =
1 together with a significantly smaller electrokinetic parameter at K = 1.5. However, as
the value of K increases, the channel width also increases, leading to the emergence of
instabilities beyond a critical wavenumber. The critical wavenumber, which corresponds
to a zero growth rate, can be calculated by identifying the value of α at which the growth
rate becomes zero, as indicated by the curve. As witnessed in figures 6(a) and 6(b), for
ω = 1 and higher values of K, the flow remains stable for smaller values of α. However,
instabilities start to manifest as the wavenumber increases. These inferences suggest that
the stability of the underlying flow is influenced by the rotation parameter (ω) and the
electrokinetic width (K), leading to a wider range of wavenumbers implicating the onset
of instabilities.

In the analysis dealing with the transition to instability with a fixed value of K and for
different values of ω as depicted in figures 6(a) and 6(b), we observe that for K = 1.5,
the flow remains stable for ω = 1. It can also be shown (as elaborated later) that for
K = 1.5, the flow remains stable for ω ≈ 5.95. This is also depicted in figure 7(a).
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Figure 6. Variation of real growth rate βr versus α and transition from stability to instability. (a) Different
values of K when ω = 1. When K = 1.5 and ω = 1, the flow is always stable. This trend of stable flow for
K = 1.5 continues for a value of ω taken roughly up to 5.95. (b) Different values of K when ω = 10. When K
is small, there is a transition towards stability from instability. However, as K is increased, the flow gradually
transits to an unstable flow from a stable flow.
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Figure 7. Variation of real growth rate βr versus α and transition from stability to instability. (a) Different
values of ω when K = 1.5. For significantly small values of K, the flow gradually tends to be stable with
increasing wavenumber. (b) Different values of ω when K = 10. For large values of K, the flow is stable only
for smaller wavenumbers, while the instabilities occur in the flow as the wavenumber increases.

However, instabilities start to emerge as ω increases beyond its critical value (ω ≥
6). These instabilities gradually lead to stability as the wavenumber increases. This
observation suggests a transition from stability to instability as ω exceeds a critical value.
The exact critical value of ω depends specifically on the problem under consideration.

Figure 7(b) shows different trends of the stability picture for the higher values of ω
considered. At a higher value of ω (= 10), the flow is stable only for smaller wavenumber
α. Increasing the value of α, the flow gradually becomes unstable, as witnessed by the
growth rate curve for different values of K in the figure.

We rewrite (3.38) in the form

AK4 − BK2 + C = 0, (3.39)

where A, B and C are defined in Appendix A.
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Figure 8. (a) Variation of critical wavenumber αc with electro-osmotic parameter K, for different values of ω.
As ω increases, the critical value of α becomes gradually higher. (b) Variation of critical K with wavenumber
at different values of ω.

We seek to find the critical wavenumber above which instabilities appear in the flow
corresponding to the different values of K and ω. We put β = 0 in (3.39), and perform an
implicit derivative of K with respect to α2. Thus the rate of change of K with respect to α2

is obtained as

dK
dα2 = ΛK4 + K2(2α2Λ+ 2δ − Γ )+ (α4Λ+ 2δα2 − α2Γ − ξ + ε)

4K3δ + 2τK
, (3.40)

where τ, δ,Λ, Γ, ξ, Γ are defined in Appendix A. In order to find the critical wavenumber
αc, dK/dα2 is set to zero. As a result, we obtain

ΛK4 + K2(2α2
cΛ+ 2δ − Γ )+ (α4

cΛ+ 2δα2
c − α2

cΓ − ξ + ε) = 0. (3.41)

This equation is solved numerically for different values of ω after substituting the value
of K from (3.39). It is to be noted that since wavenumber is a real quantity, only the real
part of αc is to be considered from the solution obtained from (3.41). Finally, the critical
wavenumber above which the instabilities appear in the flow can be obtained for different
values of K and ω.

In order to study the variation of Kc (critical electro-osmotic parameter) with respect
to wavenumber, the reciprocal of (3.40) is set to zero. The expression of Kc for different
values of ω as a function of α is thus obtained as

Kc =
√

− τ

2δ
. (3.42)

Figure 8(a) represents the variation of critical wavenumber (αc) with K for different values
of ω. It is seen that with increasing ω, the range of αc increases. This shows that the system
under consideration tends to become stable as ω is increased.

The variation of critical electro-osmotic parameter Kc with wavenumber α for different
ω is shown in figure 8(b). It can be seen that with increasing α, the critical electro-osmotic
parameter Kc first decreases and then increases with increasing α.
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3.2.2. Analytical verification: employment of the modified Routh–Hurwitz criterion
Here, we make an effort to verify the stability threshold of the flow field, employing
an analytical method consistent with the modified Routh–Hurwitz criterion. Using this
method, we check the stability of the flow for K = 1.5 and in the neighbourhood of
ω = 5.9. Additionally, we establish by using this method that the flow is always stable
for K = 1.5 and ω ≈ 5.95. The Routh–Hurwitz criterion is a method used to determine
whether the real part of a root of an equation is positive or negative. This technique allows
us to determine the sign of the real part of the root without solving the equation (D’Azzo
& Houpis 1960; Anagnost & Desoer 1991). However, when the equation contains complex
coefficients, the standard Routh–Hurwitz criterion is not applicable directly. In such cases,
the modified Routh–Hurwitz criterion is employed to analyse the stability of the system
(Lung 1966).

Equation (3.38) in terms of β can be expressed as

P(β) = pβ2 − β(q + ir)+ (x + iy), (3.43)

where the terms p, q, r, x, y are given in Appendix B. In order to apply the modified
Routh–Hurwitz criterion, we introduce another polynomial P̄(β), which is the complex
conjugate of the polynomial P(β) defined in (3.43). Multiplying (3.43) by its conjugate
P̄(β), we obtain the polynomial

F(β) = p2β4 − 2pqβ3 + β2{2px + (q2 + r2)} − β(2qx + 2ry)+ (x2 + y2). (3.44)

As is evident from this equation, the zeros of the above biquadratic polynomial are
complex. To determine the nature of the real part of β, which determines the stability
of the flow, we construct the Routhian table using (3.44).

The number of sign changes in the first column of the Routhian table corresponds to the
number of roots with a positive real part. It is important to note that the number of roots
having a positive real part in (3.43) is half the numbers obtained from (3.44).

Using the modified Routh–Hurwitz criterion, we now show that the flow is always
stable for K = 1.5 and ω = 5.9. If we put K = 1.5, ω = 5.9 in (3.43), then we obtain
the polynomial

P1.5,5.9(β) = 0.1105β2 − β(q1 + ir1)+ (x1 + iy1), (3.45)

where q1 = 1.00028 + 0.211α2, r1 = 1.5445, x1 = −2.0301 + 2.1087α2 + 0.1106α4 and
y1 = 11.8063 + 2.6091α2.

As mentioned earlier, we introduce another polynomial P1.5,5.9(β), which is the
conjugate of P1.5,5.9(β), and multiply them to get the resultant biquadratic polynomial

F1.5,5.9(β) = 0.0122β4 − 0.221q1β
3 + (0.221x + q2

1 + r2
1)β

2

− (2y1r1 + 2q1x1)β + (x2
1 + y2

1). (3.46)

Using (3.46), we construct the Routhian table (see table 1a) for F1.5,5.9(β).
The expressions A1, A2, B1 and C1 in table 1(a) are defined in Appendix C.
Based on the analysis of data given in the Routhian table, the values of A1,A2,B1,C1

are obtained for α = 0–5 as given in table 1(b).
By comparing table 1(b) with table 1(a), it is observed that in the Routhian table, there

are four changes in sign along the first column. This indicates that the complex polynomial
given in (3.46) will have four zeros with a positive real part. This feature, in turn, shows
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α A1 A2 B1 C1

0 1.1488 143.51 −4.80 143.51
0.0112 0.221x1 + q2

1 + r2
1 x2

1 + y2
1 1 1.8856 207.84 −15.24 207.84

−0.221q1 −(2y1r1 + 2q1x1) 0 2 4.8290 561.56 −51.08 561.56
A1 A2 0 3 12.1793 1916 −159.98 1916
B1 0 0 4 27.6035 6470 −475.08 6470
C1 0 0 5 56.2354 20 289 −1282 20 289

(a) (b)

Table 1. (a) Routhian table for F1.5,5.9(β). (b) Estimation of A1, A2, B1 and C1.

0.0112 0.221m + g2 + h2 m2 + n2

−0.221g −(2gm + 2hn) 0
A1 A2 0
B1 0 0
C1 0 0

Table 2. Routhian table for F1.5,6(β).

that the polynomial (3.45) will have two zeros whose real part is positive. Since a positive
real β denotes a stable flow, it can be inferred that for K = 1.5 and ω = 6, the flow is
indeed stable.

Now we aim to show the instabilities in the flow when K = 1.5 and ω = 6. We put
K = 1.5 and ω = 6 in (3.43), yielding the polynomial

P1.5,6(β) = 0.1105β2 − β(g + ih)+ (m + in), (3.47)

where g = 1.00028 + 0.2211α2, h = 1.57065, m = −2.1793 + 2.2310α2 + 0.1105α4 and
n = 12 + 2.6533α2. By introducing the conjugate polynomial, as discussed earlier, and
multiplying it with (3.47), we obtain the biquadratic polynomial

F1.5,6(β) = 0.0122β4 − 0.221β3g + (0.221m + g2 + h2)β2 − (2gm + 2hn)β + (m2 + n2).

(3.48)

In the Routhian table 2, the expressions for A1,A2,B1,C1 are the same as defined in
table 1.

By constructing a table similar to tables 1(a) and 1(b), and performing an analysis using
tabulated data, it is observed that for α in the range 0–0.235, there are two sign changes.
This indicates that two zeros of the polynomial (3.48) with a negative real part exist.
Consequently, the polynomial (3.47) has one zero whose real part is negative. Therefore, it
can be concluded that for K = 1.5 and ω = 6, instabilities start to appear in the flow field.

Similarly, using the modified Routh–Hurwitz criterion for different values of K and ω,
different ranges of wavenumbers can be obtained at which the flow is unstable.

3.2.3. Generalized flow analysis
Pertaining to the flow in a bounded configuration, we also attempt to demonstrate the
flow field as described by the velocity variation in both stable and unstable scenarios.
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Figure 9. Stable velocity profile of the resultant velocity |χ(z)| =
√
(u2 + v2) at different wavenumbers and

their corresponding growth rate: (I) α = 0.08, β = 2.8; (II) α = 1.51, β = 6.37; (III) α = 2.48, β = 10.59,
when ω = 1, K = 1.5.

Using (3.25), (3.26) and (3.27), we obtain the differential equation in χ as

χ ′′ + aχ ′ + bχ = −K2 cosh{(iα + K)z}
cosh(iα + K)

, (3.49)

where a = 2iα and b = β − α2 − 2iω. The right-hand side of (3.49) is obtained from
the analytical solution of (3.25), subject to the boundary conditions of ψ given
in (3.31a,b).

The solution of (3.49) using the boundary condition (3.31a,b) takes the form

χ(z) = eiα K2

K2 − aK + b

(
cosh(lz)
cosh l

− cosh{(iα + K)z}
cosh(iα + K)

)
, (3.50)

where l = √
2iω − β. In particular, the solution for α = 0 and β = 0 reproduces the

steady-state solution given by

χ(z) = K2

K2 − 2iω

(
cosh(

√
2iω z)

cosh
√

2iω
− cosh(Kz)

cosh K

)
. (3.51)

It is worth mentioning here that the solution described in (3.27) aligns with the findings
presented in Chang & Wang (2011). Specifically, for small values of K, the EDL potential
reaches a minimum at the centre of the channel. When the value of K is low, the velocity
profile of u is approximately parabolic in the absence of rotation, and decreases rapidly
with rotation. These observations indicate the influence of rotation on the EDL potential
and velocity distribution.

3.2.4. Flow characteristics at stable and unstable regions
The stability of the flow can be assessed by examining the growth rate β. A positive value
of β indicates stability, while a negative value signifies flow instability. From figure 9,
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Figure 10. (a) Comparison of axial velocity profiles obtained from the analytical solution at the steady state
(when α = 0, β = 0) with direct numerical simulation and previous theoretical investigation. (b) Comparison
of the present dimensional axial electro-osmotic flow velocity for the limiting case of zero rotational speed with
the experimental results of Hsieh, Lin & Lin (2006) when electro-osmotic mobility is 4.21 × 10−8 m2 (V −
s)−1 m2/V/s and zeta potential is −55.32 mV for 10 mM NaCl solution. The dimensional axial velocity is
obtained by multiplying the electro-osmotic mobility and electric field into the present dimensionless axial
velocity field for the limiting case of zero rotational speed.

we observe that the flow is always stable for K = 1.5, ω = 1, hence a fully developed
parabolic nature of the velocity profile is obtained. It is also seen that as the wavenumber
α and the corresponding growth rate increase, the absolute value of the complex velocity
reduces. We have performed full-scale numerical simulations using the finite element
framework of COMSOL Multiphysics by considering the Poisson–Boltzmann equation
with Gouy–Chapman theory for the description of EDL potential, and the Navier–Stokes
equations for a purely electro-osmotically driven flow in a rotating microchannel. The
comparison analysis of our results, both analytical solutions and simulated data, with
the reported results of Chang & Wang (2011) is presented in figure 10(a). As witnessed
in figure 10(a), our analytical solutions agree well with both full-scale simulated and
reported theoretical results for all the values of K and ω considered. In figure 10(b), we
compare our analytical solutions with the experimental results of Hsieh et al. (2006) in
the limiting case of a non-rotating channel. It is worth mentioning here that the lack of
experimental data pertaining to rotating electro-osmotic flows encouraged us to focus on
this benchmarking analysis in the limiting case. The velocity profile in the stability regions
is known to expose a fully developed parabolic or wave-like structure. Conversely, in the
unstable region, the flow profile takes the form of a flattened parabolic profile as depicted
in figure 11(a). Figure 11(a) illustrates the variation of the resultant velocity profile at
different stability conditions when the other parameters are K = 1.5 and ω = 10, while
11(b) illustrates the resultant velocity profile for K = 20 and ω = 1 at different stability
conditions. As the value of β increases, the velocity profiles show a plateau-like structure.
The disturbance of the flow field occurs near the central line of the channel. For a set
of parametric values, i.e. for K = 1.5, ω = 10, both least stable and unstable zones exist.
The approximate highest negative value of β represents the most unstable velocity profile,
while the least stable corresponds to the least positive value of β. The most unstable, as
well as least stable, growth rate and its corresponding wavenumbers can be determined
from figures 7(a) and 7(b).
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Figure 11. (a) Velocity profile for the electro-osmotic flow |χ | =
√
(u2 + v2) for K = 1.5, ω = 10 when the

flow is: maximum unstable (α = 0.005, β = −1.613), least stable (α = 0.934, β = 0.0005) and stable (α =
2.768, β = 12). (b) Velocity profile for the electro-osmotic flow |χ | =

√
(u2 + v2) for most stable, neutral

and unstable regimes when K = 20, ω = 1. Here, most stable is defined as a stability of flow with maximum
positive growth rate.

These profiles bear significant information about the transition of the field for
electro-osmotic flow. This flattening effect can be attributed to the destabilizing factors in
the flowing fluid. In the case of instability, the flow velocity profile exhibits a depression
or disturbance in the vicinity of the central line of the channel. This depression signifies
the disruptive effects of instability on the behaviour of the electro-osmotic flow. This
characteristic feature suggests that the flow becomes more turbulent or irregular, deviating
from the expected parabolic or wavy shape as demonstrated in stable conditions.

4. Summary, conclusion and perspective

In this work, we present a comprehensive analysis focusing on the stability picture
of the rotating electro-osmotic flow in unconfined (single infinite plate) and confined
(channel bounded by two parallel plates) configurations. We investigate the transverse flow
behaviour in a steady state, and aptly demonstrate its response to varying rotational speeds.
Additionally, we perform stability analysis using the semi-analytical framework to explore
the velocity profiles in both stable and unstable regions.

For the unconfined case, the present analysis witnesses the presence of closed orbits
called Ekman spirals in the plots of axial velocity (u) and lateral velocity (v). As shown
in this paper, the size of the Ekman spirals decreases with rotational speed (ω). This
behaviour was observed in both steady-state and unstable cases. However, as seen for the
unstable case, the spirals are not aligned and shift leftwards with increasing ω. In the stable
region, each Ekman spiral is accompanied by a discontinuity, realized by a diminishing cut,
indicating the decay of disturbances over time.

Pertaining to the flow in a confined domain, we solve the linear stability equation using
the Galerkin approximation method. We depict the neutral stability curves for different
values of the electro-osmotic parameter (K) and ω. The results show that the stability
of the flow decreased with increasing ω. Applying the modified Routh–Hurwitz criterion,
which is employed for the first time in the context of the stability analysis, we establish that
the flow was always stable for K = 1.5, and ω up to approximately 6. We also undertake
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an effort in this work to investigate steady-state flow profiles in both stable and unstable
states.

The findings of this paper highlight the significance of both ω and K as crucial
parameters in determining the stability of the system. The present modelling framework
is deemed pertinent to reveal the effect of time-modulated external electric fields on
the stability picture of rotational flows, offering a more practical approach to solve
stability issues of the flows in state-of-the-art lab-on-a-chip systems. We believe that the
insights gained from the stability analysis of the chosen flow configurations have potential
implications in the design and development of various systems, used typically in drug
delivery and mass transfer. Moreover, the analysis of the underlying flow, presented in this
study, can serve as a basis for investigating solute mixing in annular channels using lateral
transverse flow.
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Appendix A

The terms A, B and C appearing in (3.39) are given by

A = 0.0295 + 0.0028a2 − 0.0126b + 0.0009b2,

B = 2α2A − (0.2673 − 0.09α2 − 0.1123b + 0.008b2),

C = α4A − α2(0.2673 − 0.09α2 − 0.1123b + 0.008b2)

+(2.7611 − 1.05α2 − 1.1832b + 0.0874b2).

⎫⎪⎪⎬
⎪⎪⎭ (A1)

The terms Λ, Γ , δ, τ, ξ and ε in (3.40) and (3.41) are given by

Λ = −0.0994 + 0.0018α2 + 0.0036iω,

Γ = 0.022 + 0.016α2 + 0.032iω,

δ = 0.0295 − 0.0112α2 + 0.0126(α2 + 2iω)+ 0.0009(α4 − 4ω2 + 4iα2ω),

τ = 2α2δ − {0.2673 − 0.09α2 + 0.1123(α2 + 2iω)+ 0.008(α4 − 4ω2 + 4iα2ω)},
ξ = {0.2673 − 0.09α2 + 0.1123(α2 + 2iω)+ 0.008(α4 − 4ω2 + 4iα2ω)},

ε = 0.1332 + 0.1748α2 + 0.3496iω.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A2)
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Appendix B

The expressions for p, q, r, x and y appearing in (3.43) are defined as

p = 0.088 + 0.008K2 + 0.0009K4,

q = 1.2 + 0.176α2 − 0.117K2 + 0.016α2K2 + 0.0126K4 + 0.0018α2K4,

r = 0.352ω − 0.032ωK2 − 0.0036ωK4,

x = 2.8056 + 0.136α2 + 0.088α4 − 0.0352ω2 − 0.274K2 + 0.928α2K2

+0.008α4K2 − 0.032ω2K2 + 0.029K4 + 0.0014α2K4

+0.0009α4K4 − 0.0036ω2K4,

y = 2.4ω + 0.352α2ω − 0.234ωK2 + 0.032ωα2K2 + 0.0252ωK4 + 0.0036α2ωK4.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B1)

Appendix C

The expressions for A1, A2, B1 and C1 used in table 1 are estimated as

A1 = 1
−(−0.221q1)

∣∣∣∣ 0.0122 0.221x1 + q2
1 + r2

1−0.221q1 −(2y1r1 + 2q1x1)

∣∣∣∣ ,
A2 = 1

−(−0.221q1)

∣∣∣∣ 0.0122 x2
1 + y2

1−0.221q1 0

∣∣∣∣ ,
B1 = 1

−A1

∣∣∣∣−0.221q1 −(2y1r1 + 2q1x1)
A1 A2

∣∣∣∣, C1 = 1
−B1

∣∣∣∣A1 A2
B1 0

∣∣∣∣.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C1)
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