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1 Introduction

At first glance, combining the vast and diverse areas of quantitative and

computational phonology in a single survey seems like a daunting task.1 But

even a little reflection reveals the necessity of this combination, as establishing an

agreed-upon dividing line between these areas is neither possible nor particularly

useful. For example, what makes an approach to phonology a “computational”

one? Perhaps it means the use of software to implement and/or test a particular

model, analysis, or learning algorithm. But this definition omits or at least

misconstrues work grounded in a formal theory of the nature of computation

that maintains a distinction between algorithm and code. Taking this idea even

further, we might consider all work on phonology to be computational in nature,

given that the phonology itself is a computational system that solves a variety of

problems such as recognition (parsing an overt form), generation (mapping an

underlying form to a surface form), andmembership (assessingwell-formedness).

Furthermore, since a phonological grammar is the end target of acquisition, any

work that theorizes or characterizes that grammar relates to some version of the

phonological learning problem.

The term “quantitative” likewise invokes multiple associations, from the gradi-

ent nature of phonological patterns themselves, to the stochastic or nondetermi-

nistic algorithms used to model them, to the statistical methods that compare the

resulting models to each other. In practice, research grounded in all of these ideas

is of course aided by computational tools. The strategy behind this Element, then,

is to instead embrace this entanglement and to celebrate the innovation and

enthusiasm of scholars who have applied algorithmic, formal, mathematical,

statistical, and/or probabilistic methods to the study of phonology and the compu-

tational problems it solves. This goal of course provides an enormous amount of

ground to cover, and so an additional inclusion criterion is a shared assumption of

an abstract phonological grammar in the generative tradition (broadly construed)

that is distinct from – though not necessarily independent of – the phonetics. As a

result, certain lines of work that are unequivocally computational and/or quantita-

tive are regrettably being left out in the interest of space limitations and narrative

cohesion. These include (among others) the learning of phonetic categories (e.g.,

Dillon et al. 2013; Thorburn et al. 2022; Matusevych et al. 2023), the modeling

of lexical acquisition via phonetic variation (e.g., Elsner et al. 2012, 2013), and

usage-based and exemplar models of phonology (e.g., Bybee 2001, 2007;

Pierrehumbert 2001a, 2001b).

For the areas that will be covered, the objective is to be representative rather

than exhaustive, in order to demonstrate the myriad ways that quantitative and

1 And it was.

1Quantitative and Computational Approaches
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computational approaches have been applied to a variety of questions grounded

in a variety of theoretical perspectives. To that end, the organizational structure

is a combination of methods, theories, and problems of interest. Specifically, the

outline of the Element is as follows. Section 2 discusses computational work on

rule-based phonological grammars and how they are learned. Section 3 then

reviews work on constraint-based phonology, with a focus on computational

and probabilistic models for the learning of grammars and hidden structure.

Following these discussions of work grounded in phonological grammars of

particular types, the next three sections show how these traditional core areas of

research have been extended to address additional areas of interest through a

variety of methods. Section 4 turns to a central area where quantitative methods

have been employed: gradient acceptability and the contribution of lexical

statistics to phonotactic generalizations. Section 5 briefly surveys the applica-

tion of information theoretic methods to questions about phonological structure,

and then Section 6 likewise briefly surveys the past, current, and potential

future applications of connectionist models to the study of phonology. Stepping

back, Section 7 discusses the contributions that formal language and model

theoretic approaches to phonology can and have made to the study of phono-

logical typology, learning, and representations. Rather than focusing on par-

ticular types of grammars, such work draws distinctions based on phonological

patterns themselves, making its findings relevant to any theory of the phono-

logical grammar and how it is learned. Finally, Section 8 concludes.

Importantly, these sectional groupings are not intended as a partition, as the

boundary lines (both conceptual and methodological) are often blurry. The

broader goal is instead to highlight how these categories complement each

other and have great potential for further integration. These problems are

hard. Studying them from as many angles as possible can only lead to greater

collective progress on the many fascinating open questions about the phono-

logical component of human languages.

2 Rule-Based Phonology

We begin with a discussion of formal approaches to rule-based phonology, a

term most often defined in contrast to constraint-based phonology, which will

be discussed in Section 3. The distinction between these categories is not

absolute, as rule-based theories can and have made use of constraints (e.g.,

morpheme structure constraints, Halle 1959, Stanley 1967, or constraints that

block or trigger a rule’s application; see Reiss 2008 for examples and discus-

sion). A set of rules can also function like constraints on input–output mappings,

as in Koskenniemi’s (1983) theory of two-level rules. Furthermore, the term

2 Phonology
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rule is sometimes used to refer to a context-dependent pattern of alternation

between segments. To “learn a phonological rule” can mean to learn the fact

that, for example, {t, d} in American English are flapped between two vowels,

or {p, t, k} are aspirated as simple onsets. The use of “rule” here is just a

shorthand for a type of pattern and is not necessarily tied to any particular

assumption about the form of the phonological grammar.

The scope of this section includes work that does make such an assumption,

namely that the phonological grammar consists of a set of ordered context-

sensitive rules. Twomain threads of research will be discussed. The first is work

on formalizing such grammars, including specifying the algorithm by which a

rule applies to a string. The second is work on the learning of these grammars.

Arguably, the first theory that comes to mind in the context of rule-based

phonology is the one proposed in Chomsky and Halle’s (1968) Sound Pattern of

English (hereafter SPE), in which phonological rules take the form in (1):

(1) A→B=X Y

This rule asserts that A is rewritten as B when in the context X__Y (i.e., the

string XAY is rewritten XBY). However, the extension of such a rule (i.e., the

set of input–output string pairs it represents) is ambiguous without a specifica-

tion for how the rule applies to a string. This ambiguity is most apparent with

rules and strings that have the potential for multiple applications. Consider the

rule in (2a) and the string in (2b); depending on how the rule applies, the output

for this string could be [par], [pa], etcetera.

(2) a. ½þcons�→Ø= #

b. /park/

The rule-application algorithm specified in SPE has become known as simultan-

eous application and is stated as follows: “To apply a rule, the entire string is first

scanned for segments that satisfy the environmental constraints of the rule. After

all such segments have been identified in the string, the changes required by the

rule are applied simultaneously” (Chomsky and Halle 1968: 344). Assuming this

algorithm, the rule in (2a) maps /park/ to [par], since in the underlying represen-

tation (UR) only /k/ satisfies the rule’s structural description ([+cons]#).

Johnson (1972) provides a formal argument for why simultaneous rules are

preferable to iterative ones, where an iterative rule is defined as one that applies

repeatedly to a string as long as any targets remain. Specifically, he proves that

iterative rules can simulate any arbitrary string rewriting system, while simul-

taneous ones are limited to the power of finite-state transducers (FSTs). He then

goes on to develop a theory of linear rules, which – like iterative rules – can

apply multiple times to a string, but – like simultaneous rules – are limited to the

3Quantitative and Computational Approaches
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expressivity of finite-state. Their restrictiveness comes from a requirement that

each successive application moves further into the string, in contrast to iterative

rules for which there is no imposed order on the different applications. In other

words, linear rules are directional and are specified to apply either left to right or

right to left.

Despite their formal equivalence, linear rules are argued to be preferable to

simultaneous ones on account of the greater simplicity with which they can

capture multiple applications. Simultaneous rules do allow for multiple appli-

cations through the mechanism of parenthesis-star, by which a rule becomes an

abbreviation for an infinite set of rules that contain zero or more tokens of the

expression in parentheses. Consider the example ATR harmony rule in (3a).

Simultaneous application will only identify the first /ʊ/ as a target in (3b), with

the resulting output [putukʊ].

(3) a. V→ ½þATR�=½þATR�C0

b. =put℧k℧=→ ½putuk℧�

If the actual surface form reflects an additional application (i.e., [putuku]), the rule

can be instead formulated as in (4a). This version represents an infinite set of

rules, including (3a) as well as (4b) and (4c), that allows for zero or more [−ATR]
vowels to intervene between the trigger and target. As long as a vowel satisfies

one of the rules in this infinite expansion in the UR, it will harmonize to [+ATR]

under simultaneous application (i.e., the second /ʊ/ in (3b) satisfies rule (4b)).

(4) a. V→ ½þATR�=½þATR�C0 ½�ATRð �C0Þ�
b. V→ ½þATR�=½þATR�C0½�ATR�C0

c. V→ ½þATR�=½þATR�C0½�ATR�C0½�ATR�C0

As a linear rule that applies left to right, however, (3a) can achieve the same

effect without the added notation of parenthesis-star. After the first application

generates [putukʊ], the newly created [u] can serve as the trigger for the final

vowel. Johnson’s work thus provided a formal grounding from which to com-

pare theories of rules and rule application in terms of both descriptive adequacy

and elegance.2

We turn now to the question of learning rules and rule-based grammars. From

the perspective of formal learnability, such grammars do not have many inher-

ent advantages. Context-sensitive grammars like SPE are not learnable from

positive data; indeed (as will be discussed further in Section 7), not even regular

2 For more discussion and comparison of rule-application algorithms, see Howard (1972),
Anderson (1974), and Kenstowicz and Kisseberth (1977, 1979). See also Bale and Reiss’s
(2018) textbook, which introduces phonology through the formal syntax and semantics of SPE-
style grammars.

4 Phonology
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grammars are, despite being situatedwell below context-sensitive on theChomsky–

Schützenberger hierarchy (Chomsky 1959; Chomsky and Schützenberger 1959):

(5) Finite ⊂ Regular ⊂ Context-free ⊂ Context-sensitive ⊂ Recursively
enumerable

Early work on rule learning then focused on the question of how a learner can

identify the correct rule or grammar when more than one are descriptively

adequate. Johnson (1984) demonstrates a deductive approach to learning a limited

set of phonological rules of the form in (6), where “a” and “b” are segments and

“C” is a feature matrix of unspecified length that is a subset of the segments

surrounding “a.”

(6) a→ b=C

The input data is a set of paradigms with stems inflected with various affixes.

Through inspection of this data, the learner identifies the contexts in which “a”

alternates with “b”without including those tokens of “a” that do not alternate. In

the case of multiple ordered rules, it entertains all possible hypotheses for which

alternation took place last, undoes that discovered rule, and then repeats this

procedure until all alternations have been accounted for. The procedure is error

driven in the sense that it rejects a hypothesis when it arrives at a point where the

rule discovery procedure fails. This working-backward technique means the

learner will also propose URs for the stems and affixes present in the data.

Johnson’s approach demonstrates that the presence of non-surface-true pat-

terns resulting from rule ordering is not inherently a barrier to learning, but

additional selection criteria are needed for such a learner to converge on a single

grammar. In a case in which the rules are not strictly ordered (i.e., multiple

orderings will correctly generate the data), the learner will identify multiple

grammars with no way of deciding among them. Similarly, given that the

context of a single rule will not always be strongly data determined, the learner

will need to appeal to some type of evaluation metric or guiding principle to

select among a set of adequate contexts.

Other work that addresses the learnability of rules has been couched in a

substance-free theory that emphasizes the formal nature of phonology as a compu-

tational system that operates over symbolic representations. Reiss (2008: 258–9) –

summarizing views presented in earlier work including Hale and Reiss (2000a,

2000b) – articulates the substance-free view of the phonological system as follows:

The computational system treats features as arbitrary symbols. What this
means is that many of the so-called phonological universals (often discussed
under the rubric of markedness) are in fact epiphenomena deriving from the
interaction of extragrammatical factors like acoustic salience and the nature

5Quantitative and Computational Approaches
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of language change. Phonology is not and should not be grounded in phonet-
ics since the facts which phonetic grounding is meant to explain can be
derived without reference to phonology.3

This focus on phonological computation enables a streamlined conception of

universal grammar (UG) that facilitates formal discussions and treatments of

learning problems. For example, Dell (1981) discusses the subset problem

inherent to the learning of optional rules. As an example, French optionally

deletes an /l/ that follows an obstruent and precedes a consonant or pause:

(7) a. =kεltabl=→ ½kεltabl� e ½kεltab�; quelle table?, “which table?”
b. =parl=→ ½parl� �½parð �Þ, parle, “speak”

Consider two versions of this deletion rule: Deletion A targets coda /l/’s

following obstruents, and Deletion B targets coda /l/’s following any consonant.

The evidence that distinguishes these two rules is negative evidence, such as the

ungrammaticality of *[par] in (7b). But given that such evidence is unavailable

to the French-learning child, how do they come to select Deletion A instead

of Deletion B? This is the subset problem. The grammar that includes the less

restrictive Deletion B will correctly generate all of the observed data. Without

negative evidence, the learner will never have reason to consider a more restrict-

ive grammar (i.e., one that generates a proper subset of the forms generated by its

current grammar). Dell then proposes that the language acquisition device

(LAD) must include the strategy of always selecting the more restrictive gram-

mar when faced with this choice.

Notably, this scenario is only relevant to the case of optional rules. As an

optional rule, Deletion A generates the language including [tabl], [tab], and

[parl], while the less restrictive Deletion B generates [tabl], [tab], [parl], and

*[par]. But if the rules are obligatory, the subset–superset relationship no longer

holds: Deletion A generates [tab] and [parl] while Deletion B generates [tab] and

*[par]. In this case, positive data – specifically, encountering [parl] – will be

sufficient to correct an earlier hypothesis of Deletion B. In this way, obligatory

rules serve to provide indirect negative evidence (i.e., if [parl] is grammatical,

then *[par] must not be). The challenge, of course, is how the learner can know

whether the rule they are learning is optional or obligatory. To address this issue,

Dell further proposes that the learner assumes the rule is obligatory until they

encounter evidence of optionality.

Hale and Reiss (2008) recast the subset principle as a description of the

learner’s initial state, rather than a guiding principle for selecting among

3 See a recent special issue of the Canadian Journal of Linguistics/Revue canadienne de linguis-
tique (Volume 67 Number 4) for a collection of papers situated in this approach.

6 Phonology
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competing grammars. In particular, they argue that UG must provide the

complete set of primitives (i.e., features) so that the learner can posit the most

specified rule possible (contra typically assumed pressures of economy in rule

formulations) that accounts for all and only the forms to which it applies.

Generalizing over observed instances of the rule is achieved via set intersection

over the fully specified feature bundles. Maximally specifying while still

generalizing is necessary for the reasons stated earlier in this Element: an overly

general rule will never be contradicted by positive evidence alone.

This principle of generalizing over more specified instances was employed in

the minimal generalization learner of Albright and Hayes (2002, 2003), who

investigate rule learning in the context of the rules-versus-analogy debate of

inflectional morphology (e.g., Pinker and Prince 1994; Bybee 2001).4 The

learner compares pairs of (present, past) forms to identify the change that

derives the past from the present. For example, the comparison of shine and

shined reveals the rule in (8):

(8) Ø→ d=
Ð aɪn

This rule is, of course, overly specific, but additional comparisons reveal more

rules that share its structural change (e.g., grab-grabbed, hug-hugged, fill-filled,

etc.). The specifications of these rules can be combined into the more general

rule in (9a), or using features, (9b).

(9) a. Ø→ d= n; b; g; lgf
b. Ø→ d=½þcons;þvoice�

This procedure will generate a set of rules that differ in their generality, such that

a given input may be subject to more than one rule. To address this ambiguity,

all rules are also given a confidence score, which is the number of forms in the

training data that the rule correctly applies to (i.e., its number of hits) divided by

the number of forms it can apply to (i.e., the rule’s scope). The set of rules along

with their confidence scores can account for gradience (see Section 4) if an

output’s well-formedness is taken as the score of the “best” rule that generates it.

Getting back to the question of the learner’s initial state, Hale and Reiss’s

(2008) argument is that because the distinctions needed to work out the phono-

logical system can only be detected to the extent that parsing encodes forms

differently, the maximally specified initial representation needed to avoid the

subset problem is only possible if UG provides all features. But Odden (2022)

rejects this assumption in favor of radical substance-free phonology, in which

4 Minimal generalization as a learning strategy is not dependent on the rule formalism. It is also
used to inform the learning of phonotactic constraints in Albright (2009), which will be discussed
in Section 4.

7Quantitative and Computational Approaches

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
42

04
02

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009420402


only the abstract concept of a feature is provided by UG rather than an actual

feature set. The learning of both the feature set and the rules of the grammar is

guided by the evidence of how and which sounds pattern together (see also

Mielke 2008).5 Even though the phonological system is responsible for parsing

those sounds that are recognized as linguistic objects, the auditory system deals

with acoustic representations of all sounds. If the current hypothesis for the

phonological grammar has discarded important information about, for example,

which sounds contrast, that information is still available through the auditory

system and so a correction can be made. Given that, the learner’s objective

can be characterized by something other than avoiding the subset problem.

Odden’s (2022: 526) proposal instead emphasizes simplicity: “The task of

feature acquisition is finding the simplest system of properties that accounts

for those cases of grammatical functioning-together that can be observed in the

primary linguistic data.”

The significance of both restrictiveness and simplicity is recognized by Rasin

et al. (2020, 2021), who argue that the learner’s task is actually to find the

optimal balance between these potentially conflicting demands. Specifically,

they propose the use of minimum description length (MDL) for learning not just

a grammar of ordered rewrite rules but also the lexicon of URs.6 Length in this

case is the combined total (in bits) of the grammar itself as well as the encoding

of the data given that grammar. Consider again the example of optional /l/

deletion in French. The context-free version of this rule in (10a) is shorter than

the target version in (10b), and so would be favored by simplicity.

(10) a. l→Ø
b. l→Ø=½�son� #

Of course (10a) will over-generate, but as discussed earlier in this section, the

learner cannot recover from that error without negative evidence. Employing

something like the subset principle is necessary to select the correct rule.

However, Rasin et al. argue that the optionality of the rule creates a further

problem. If the learner has only encountered one of the possible rule outputs –

say either [tab] or [tabl] for “table” – then a grammar that does not generalize to

predict the other form will be more restrictive than the one that includes (10b).

One such grammar would be the one that does not propose a rule at all, but

instead just lists in the lexicon all of the forms observed so far. In this way, the

subset principle’s insistence on restrictiveness can have the effect of preventing

generalization.

5 A substance-free approach is also compatible with non-rule-based formalisms; see Blaho (2008)
for an approach to learning optimality theory constraints in this framework.

6 See Goldsmith (2001, 2006) for earlier work using MDL to learn morphology.
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Minimum description length balances these competing demands by comput-

ing not just the size of the grammar, but the “cost” of describing the data with

that grammar. In particular, the cost of choosing a UR from the lexicon increases

with the size of the lexicon (2 choices = 1 bit, 4 choices = 2 bits, etc.), and so

generalizing with a rule is cheaper. In addition, whether or not an optional rule

has applied to a UR that it can apply to is specified with an additional bit. (This

added bit is not needed for obligatory rules, because whether or not they apply is

determined by the choice of UR itself.) As an optional rule, then, (10b) is

actually cheaper than (10a) because it can apply to fewer URs.

As the recency of Rasin et al.’s (2020, 2021) work shows, the question of how

to learn rule-based grammars has not been abandoned, but it is undeniable that

the progress in phonological learning research was greatly accelerated follow-

ing the shift to constraint-based grammars like optimality theory (OT) (Prince

and Smolensky 1993, 2004). The next section turns to the research on these

grammar types, the comparisons among them, and how to learn them.

3 Constraint-Based Phonology

Constraint-based phonology has become an umbrella term for a collection of

phonological theories that centralize constraints on representations instead of

the procedures by which those representations are changed.7 Given how readily

these theories lend themselves to computational learning models and statistical

methods for working with quantitative data and patterns, it is not surprising that

the shift in the field from rule- to constraint-based phonology corresponded to a

surge in research on these areas that continues today. This section will begin

with an overview of different types of constraint-based grammars (Section 3.1),

followed by a survey of the work addressing a variety of phonological learning

problems (Section 3.2). Lastly, Section 3.3 will highlight some of the arguments

used to compare these theories to each other, including their ability to address

questions of theoretical interest as well as what is known about their respective

complexity and learnability.

3.1 Constraint-Based Theories of Phonology

The theory of declarative phonology (Bird et al. 1992; Bird 1995) forgoes

derivation in favor of inviolable (i.e., “hard”) constraints whose interaction is

compositional: all constraints must be satisfied simultaneously for a phono-

logical object to be licit. The term declarative invokes the distinction between

7 This centralization of constraints does not preclude the use of derivation, as exemplified by
theories like stratal OT (Bermúdez-Otero 1999) and harmonic serialism (McCarthy 2000), but
those theories maintain the emphasis on constraints over processes.
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declarative and imperative programming languages, the former emphasizing

the logic of the computation over the step-by-step procedure that performs

it. Logic also provides a formal description language for the constraints them-

selves, which can be stated using predicates and logical connectives. For

example, the constraint in (11) asserts that every onset is dominated by (∂) a
syllable (example from Scobbie et al. 1996):

(11) 8x�onset xð Þ→ ∃ y ½syllable yð Þ∧ ∂ y; xð Þ��

What we might call a rule can also be represented with a constraint in the same

description language – for example, (12), which says a high back vowel is

specified as [+round]. Further conditions can be added to the antecedent to

constrain this specification to certain contexts.

(12) 8 x�½high xð Þ∧ back xð Þ�→ round xð Þ�

Lastly, morphemes or lexical entries are also stated as constraints (or partial

descriptions), in contrast to more typical generative assumptions that differen-

tiate the lexicon from the grammar that operates on it. For example, (13) gives a

partial description of a vowel:

(13) ∃ x½high xð Þ∧ back xð Þ�

Declarative phonology has been applied to the study of many types of phono-

logical structure; for examples see Broe (1993), Bird and Ellison (1994), and

Scobbie et al. (1996), and references therein.

Inviolable constraints are language-particular and at times need to be quite

specific in order to capture the context-dependent nature of phonological

alternations and feature licensing. In contrast, violable constraints can be

more general and amenable to arguments of a universal constraint set.

However, the potential for violation necessitates a different mechanism than

full satisfaction to determine well-formedness. One such mechanism is to rank

the constraints in order of importance (or severity of violation), which is the

foundation of OT.

As a basic example, the grammar in Table 1 shows how a word-final devoi-

cing pattern can be represented in OT. Columns after the first one are labeled

with members of the universal constraint set CON, and rows after the first one

are labeled with one of the infinite set of candidate surface forms provided by

GEN. Cells are filled in by EVAL, which assesses whether and to what extent

each candidate violates each constraint.

The UR /bad/ violates the markedness constraint *D#, which says words

cannot end in voiced obstruents. The winning candidate (marked with☞), also

violates a constraint, the faithfulness constraint Ident(voice), which says that

10 Phonology
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surface specifications of the feature voice should match their underlying values.

But because the constraints are ranked in order of importance (with left-to-right

corresponding to more-to-less important), the violation of Ident(voice) is less

serious than the violation of *D#, and so [bat] is the optimal form among those

evaluated. Additional faithfulness constraints that are violated by other means

of avoiding the violation of *D# – including deleting the obstruent (MAX =

don’t delete) or adding a word-final vowel (DEP = don’t add) – must also be

ranked above Ident(voice) so as to ensure the candidate that violates it is in fact

the winner.

“Classic” OT grammars are categorical, mapping an input to its single, optimal

output. But there is great interest in models of grammar that allow for multiple

outputs due to variation, as well as account for the observed gradience in accept-

ability judgments and/or lexical statistics (as will be discussed at length in the next

section). Proposals for modeling gradience with a grammar of ranked constraints

have included (1) stochastic OT, (2) partially ordered constraints, and (3) the rank-

ordered model of EVAL. These will now be discussed in turn.8

In stochastic OT (Boersma 1997; Boersma and Hayes 2001), constraints are

associated with a range of values rather than a fixed position. During evaluation,

a random variable introduces noise that establishes each constraint’s position in

its respective range, and then all constraints are ranked according to these

selected positions. If two constraints have nonoverlapping ranges, it amounts

to a fixed ranking between them. With overlapping ranges, the respective

ranking of two constraints will vary in a way that reflects how often different

candidates surface as the winner for a given UR. For instance, if in the provided

example final devoicing is optional, the two candidates [bad] and [bat] could

surface in proportion to how often the positions of *D# and Ident(voice) are

reversed in the ranking order. While the grammar is still categorical, gradient

Table 1 Optimality theory grammar for final devoicing

UR: /bad/ DEP MAX *D# Ident(voice)

[bad] *!
☞[bat] *
[ba] *!
[bada] *!

8 These solutions still have to address the all-or-nothing problem that arises when a given form has
multiple potential application sites for an optional process (see Riggle andWilson 2006 and Vaux
2008). Thanks to a reviewer for pointing this out.
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well-formedness can be captured in terms of the percentage of some number of

trials in which a particular form wins.9

Another approach to handling optionality in OT is the use of partial orders of

constraints. In the example grammar in Table 1, the constraints are actually in a

partial, not strict, order because the relative ranking of DEP, MAX, and *D# is

irrelevant to selecting the winner. This partial order, shown in (14), can be

cashed out into multiple strict orders, some of which are listed in (15).

(14) DEP;MAX; �D#g≫ Ident voiceð Þf

(15) a. DEP≫MAX≫ �D#≫ Ident voiceð Þ
b. DEP≫ �D#≫MAX≫ Ident voiceð Þ
c. MAX≫DEP≫ �D#≫ Ident voiceð Þ

In the case of optionality, multiple output forms are possible as long as they win

under at least one of the strict orders allowed by the grammar’s partial order.

Anttila (1997a, 1997b) demonstrates this potential with the complex patterns of

Finnish noun inflections. For example, the genitive form of /maailma/, “world”

varies between the “strong” and “weak” forms in (16a) and (16b) (acute and

grave accents indicate primary and secondary stress, respectively).

(16) =maailma=; “world”
a. ½máa:il:mòi:den�
b. ½máa:il:mo:jen�

In Anttila’s analysis, NoClash allows for alternating syllables to be stressed, but

secondary stress is optional. The two outputs in (16) tie on the weight-to-stress

constraints *Ĺ and *H (i.e., neither violates the former and both violate the latter

once). This indeterminacy of the grammar explains why both forms are permit-

ted, as well as their observed frequency of occurrence (~50/50). Optionality is

also predicted when two candidates do not tie but disagree on constraints that

are not strictly ordered. This is the case for the stem /naapuri/, “neighbor,”

which has the possible output forms shown in (17a) and (17b).

(17) =naapuri=; “neighbor”
a. ½náa:pu:rèi:den�
b. [náa.pu.ri.en]

Candidate (17a) violates *H/I (weight–sonority harmony) and *Í (stress–sonority

harmony), while candidate (17b) violates *L.L (no lapse). But both are able to

surface because this set of constraints {*H/I, *Í, *L.L} is not in a strict order.

9 See also Hammond (2003, 2004) for probabilistic OT, in which the probabilistic ranking of each
markedness constraint with regard to faithfulness is assumed to be independent, and gradient
acceptability reflects the joint probabilities of the rankings of the relevant markedness constraints.
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Which one actually surfaces is determined by random selection of one of the

possible strict orders of these three constraints. Furthermore, the probability of

each form can be determined as the proportion of possible orders it wins under.

In this example, (17a) wins whenever the two constraints it violates are ranked

below the one constraint violated by (17b). The ratio of four orders under

which (17b) wins to two orders under which (17a) wins corresponds closely to

their observed frequencies in a corpus analysis.

Lastly, Coetzee’s (2006) proposal attributes variation to the way constraints

are evaluated instead of the way they are ranked. In this rank-ordering model of

EVAL, relative grammaticality can be assessed even among the nonoptimal

candidates that do not win. Consider again Table 1, and assume (for the sake of

demonstration) that MAX, DEP, and *D# are strictly ordered as shown. Putting

aside the winning candidate [bat], the remaining candidates can be ordered

according to the ranking of the constraint they fatally violate: [bad] is more

well-formed than [ba], which is in turn more well formed than [bada]. The

consequent prediction is that the higher a candidate appears in this order, the

more frequent it will be. Limits on variation are imposed with a “cutoff” point in

the constraint ranking, such that variation is only possible among candidates

whose well-formedness is determined by constraints below the cutoff.

Another prominent approach to variation is the use of a constraint set that is

weighted instead of ranked, as in OT’s predecessor harmonic grammar (HG)

(Legendre et al. 1990; Smolensky and Legendre 2006). With weighted con-

straints, candidates are assessed using the weighted sum of constraint viola-

tions, called the harmony score:

(18) H ¼
XK

k¼1
w
k
� sk

In (18), wk is the weight of constraint k, and sk is the number of violations

(typically represented with negative numbers). The optimal candidate is the one

with greatest harmony, or the score closest to zero. Table 2 presents an HG

version of the grammar from Table 1 with MAX and DEP omitted for simpli-

city. The constraint weights are listed at the top of each column and the

candidates’ harmony scores are listed at the end of each row.

Table 2 Harmonic grammar for final devoicing

weights: 2 1

UR: /bad/ *D# Ident(voice) Harmony:

[bad] −1 −2
☞[bat] −1 −1

13Quantitative and Computational Approaches

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
42

04
02

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009420402


One advantage of HG is its ability to model the cumulative effects of

violating multiple constraints, in contrast to OT in which only violations of

the highest-ranked decisive constraint matter. (More will be said about cumu-

lativity in Section 3.3.) But the grammar is still categorical and outputs a single

optimal form. To address variation, Noisy HG (Boersma and Pater 2016) adds

random noise to the constraint weights during evaluation:

(19) H ¼
XK

k¼1
wk þ Nkð Þ�sk

In (19), N is a random variable sampled from a Gaussian distribution. The use of

noise to adjust constraint weights allows for potentially different outputs to emerge

as optimal, but each time the grammar is used there is still only one output. In

contrast, amaximumentropy (MaxEnt) HG grammar producesmultiple outputs in

the form of a probability distribution over the candidate set. The conditional

probability of each candidate y given a UR x is calculated by raising the base of

the natural logarithm to the candidate’s harmony score (H(y)) and normalizing

over all candidates under consideration, Y (Goldwater and Johnson 2003).

(20) P xð Þ ¼ 1

Z xð Þ exp H yð Þ

(21) Z xð Þ ¼
X

y2Y xð Þ expH yð Þ

The constraint weights are identified with maximum likelihood estimation: the

goal is to find the weights that maximize the product of the conditional prob-

abilities of all input–output pairs in the training corpus. This learning objective

is a particular conception of the phonological learning problem, one that is tied

to the initial assumption about what form the phonological grammar takes. The

next section will explore this connection between grammar and learning prob-

lems further by discussing the phonological learning literature grounded in the

previously described constraint-based theories.

3.2 Learning with Constraint-Based Grammars

As with rule-based grammars, a central question for constraint-based grammars

is how they are learned from positive data. This section will survey the various

ways this question has been addressed, which include different formulations of

the learning problem itself. Section 3.2.1 starts with work that assumes the

constraint set is known in advance – either as a simplifying assumption or

because it is provided by UG – and therefore the learning problem is a matter of

identifying the correct ranking of these provided constraints. Section 3.2.2

addresses the problems inherent to learning from surface forms alone, which

include the learning of hidden structure and underlying forms. Lastly, Section

3.2.3 turns to the problem of learning the constraints themselves.
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3.2.1 Learning Constraint Rankings

Under the assumption that the phonological grammar is a set of ranked con-

straints and the constraints themselves are provided by UG, the learning prob-

lem is to identify the correct ranking of those constraints for the target language.

One advantage of defining the learning problem in this way is that the logic of

optimization provides implicit negative evidence in the form of the candidates

that do not win. Influential work by Tesar (1995) and Tesar and Smolensky

(1993, 1996, 1998, 2000) demonstrated how this evidence can be used with an

algorithm called recursive constraint demotion (RCD).

Recursive constraint demotion makes use of winner–loser pairs of candidates

to produce a stratified hierarchy of groups of constraints, in which constraints

in the same group do not conflict with one another.10 Returning to the final

devoicing example, Table 3 is a comparative tableau (Prince 2000) for pairs of

candidates (the first being the desired winner) with indicators of which con-

straints prefer the winning candidate (W) or the losing candidate (L). Constraint

preference here refers to which candidate violates the constraint to a lesser

degree; blank cells indicate that the candidates tie on that constraint.

The basic logic of optimization is that the constraints that favor losing

candidates must be outranked by at least one constraint that favors the winner.

To achieve this, RCD first identifies those constraints that prefer only winners

and situates them in the top stratum of the hierarchy. In this example, those

constraints are *D#, MAX, and DEP. Winner–loser pairs that are accounted for

with this ranking can then be removed, and the process repeats with the

remaining pairs and constraints. With this simple example, all winner–loser

pairs are accounted for after the first pass, leaving the ranking of {*D#, MAX,

DEP} ≫ Ident(voice) as desired.

With respect to the subset problem discussed in Section 2, identifying the

subset relations among grammars of ranked constraints becomes increasingly

10 See Tesar and Smolensky (1998, 2000) for an error-driven approach to identifying informative
winner–loser pairs, and Tesar (1998) for an online version of RCD (multi-RCD) that shows how
learning can proceed over time.

Table 3 Comparative tableau based on the example grammar
in Table 1

UR: /bad/ Ident(voice) *D# MAX DEP

bat ~ bad L W
bat ~ ba W
bat ~ bada W
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infeasible as the size of the assumed constraint set grows (i.e., there are k!

possible grammars for a set of k constraints). Instead, the search for the most

restrictive grammar consistent with the observed data has been addressed

through the relative ranking of markedness constraints with respect to faithful-

ness constraints. Consider the (simplified) example of learning stress patterns as

in the PAKA system defined by Tesar et al. (2003). Following richness of the

base (Prince and Smolensky 1993), underlying forms can be either stressed or

unstressed, and the constraints in question include the markedness constraint

StressLeftmost (first syllable is stressed) and the faithfulness constraint Ident

(stress) (preserve underlying values for stress). The ranking of markedness over

faithfulness (StressLeftmost ≫ Ident(stress)) is the most restrictive: all under-

lying contrasts for the feature stress collapse to the predictable pattern of first

syllable stress. The ranking of faithfulness over markedness (Ident(stress) ≫

StressLeftmost) is the least restrictive in that all underlying contrasts are

preserved.

More generally, a grammar’s degree of restrictiveness can be assessed in

terms of how many markedness constraints dominate faithfulness constraints.

Prince and Tesar (2004) call this the r-measure, with a larger r-measure corres-

ponding to a more restrictive grammar. But now consider that in the case of

phonotactic learning – in which the UR is assumed to be identical to the surface

representation, or SR (more on this in the next section) – faithfulness constraints

are effectively inviolable. Since RCD ranks constraints as high as possible,

faithfulness constraints will end up at the top of the hierarchy at great cost to the

r-measure. Prince and Tesar’s (2004) proposed solution is biased constraint

demotion (BCD), in which faithfulness constraints are only situated into the

hierarchy when nomarkedness constraints are available.11 The consequence is a

delay in ranking faithfulness constraints that maximizes the resulting gram-

mar’s r-measure, as desired.

In the case of stochastic OT, the learning problem is not to learn a fixed

ranking, but the range of values associated with each constraint. The gradual

learning algorithm (GLA) proposed by Boersma (1997) and Boersma and

Hayes (2001) assumes these ranges are Gaussian distributions (with a fixed

standard deviation) that are centered on a constraint-specific ranking value, in

which case the target of learning is to identify these ranking values. The learner

is error-driven andmakes use of (UR, SR) pairs for which the current hypothesis

of the grammar selects an incorrect winner as the SR. A constraint that is

violated by the actual SR but not the incorrect winner is moved down the

11 See also Hayes (2004) for an independent proposal of a similar algorithm and Tessier (2007,
2009) for a use of BCD in a gradual, error-selective learner that can model the stages of
phonological acquisition.
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scale, while a constraint violated by the incorrect winner but not the actual SR is

moved up the scale. These movements are by a fixed amount, called the

plasticity.

Stochastic OT’s ability to handle variation means it can learn from noisy data

that not only reflects optionality but also includes speech errors. When the same

UR appears with multiple SRs in the training data, each token will have an effect

on the ranking values of the relevant constraints. The resulting grammar will

then generate those forms in proportion with their frequency of occurrence in

the data. In addition, as demonstrated by Zuraw (2000), stochastic ranking can

account for lexical regularities that do not drive alternations and often have

exceptions.With the GLA’s method of adjusting ranking values, the more words

that violate a constraint, the lower ranked it will be (and vice versa). The

likelihood of a word being an exception is then captured by the degree of

overlap among the relevant constraints.

To close this section, we will briefly discuss learning rankings in harmonic

serialism (HS) (McCarthy 2000), a constraint-based framework that reintro-

duces the concept of derivation. In HS, the UR–SR mapping occurs in steps,

with each step consisting of an OT-style selection of the optimal candidate

according to a fixed ranking of constraints. The winning candidate becomes the

input to the subsequent step, and GEN is restricted such that each candidate can

differ from the input by only a single violation of a faithfulness constraint. The

derivation concludes when the fully faithful candidate is selected as the winner.

As discussed by Tessier and Jesney (2014), HS’s use of derivation introduces

a challenge for error-driven learning in that the informative error may be hidden

in one of the intermediate steps. To address this challenge, Tessier (2012)

proposes a multistage learning process in which the ranking information that

can be gleaned from the SRs is later refined using the candidate set generated for

observed forms, first to construct winner–loser pairs and then as hypothetical

inputs to the grammar. Jarosz (2016) also addresses the problems inherent to

learning derivations in the context of serial markedness reduction (SMR)

(Jarosz 2014), a variant of HS proposed to handle opaque process interactions.

In SMR, candidates are annotated with which markedness constraints they

satisfy, and additional serial markedness constraints are used to favor candidates

that satisfy constraints in a particular order. To learn such grammars, Jarosz

(2016) proposes expectation driven learning (EDL), a probabilistic learning

approach that in this case assumes a stochastic version of Anttila’s (1997a,

1997b) partial order grammars discussed previously in Section 3.1. The learner

identifies the pairwise ranking probabilities of the constraints based on how

often each ranking successfully generates the observed data. Because the

learner considers each possible (pairwise, not total) ranking in turn, it does
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not need information about the intermediate steps of the derivation and uses

only examples of the composite UR–SR mapping.

The intermediate steps of an HS derivation are one example of the hidden

structure problem that has drawn a lot of attention in the phonological learning

literature. Expectation driven learning and other probabilistic learning methods

for constraint-based grammars have played a large role in this line of work,

which will be explored further in the next section.

3.2.2 Learning Hidden Structure

The term hidden structure refers to information not available in the observable

data that is nonetheless important for identifying the grammar that generated

those forms. While providing a learner with full structural descriptions and/or

(UR, SR) pairs can be a valuable simplifying assumption for making initial

progress on phonological learning problems, the more realistic setup of learning

from overt forms is the ultimate goal. This section will review some of the work

that has drawn on constraint-based frameworks to take on that challenge.

One type of hidden structure is the ambiguity of syllable boundaries and

metrical structure. Consider an overt form [apa], which could be syllabified in

various ways, including [a.pa] and [ap.a]. Similarly, stress placement on the first

vowel could result from a trochaic foot (ápa), or a degenerate foot followed by

an extrametrical final syllable (á)<pa>. The correct parse depends on the

grammar, but to learn that grammar the learner needs to know what the correct

parse is. To address this circularity, Tesar and Smolenksy (2000) incorporate

robust interpretative parsing (RIP) into an iterative version of RCD. Starting

from an assumed initial constraint hierarchy, RIP maps an overt form to its full

structural description according to this grammar. The UR for that structural

description is then mapped to its optimal SR, again according to the current

grammar. If these two structural descriptions do not match, they are used as a

winner–loser pair by RCD to revise the grammar. This parsing/production

feedback loop iterates until there are no more mismatches.12

As a simple example, consider a target grammar that assigns penultimate

stress by way of a right-aligned trochee. Now assume some (incorrect) con-

straint hierarchy that parses the overt form [σσσσ́σ] as [σσ(σσ́)σ]. That same

grammar then parses the UR for this form, /σσσσσ/, as [(σσ́)σσσ]. Since these
parses do not match – and further, the grammar’s placement of stress contradicts

what is actually observed – the learner knows that the hypothesized constraint

hierarchy is wrong and needs to be adjusted. As with RCD more generally, the

12 See Dresher and Kaye (1990) and Dresher (1999) for a comparison between RIP/CD and a cue-
based learning approach for setting metrical parameters.
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RIP/CD algorithm capitalizes on the implicit negative evidence of spurious

winning forms, generating its own informative errors by using the same gram-

mar for production and parsing.

Another source of the hidden structure problem is the lexicon of URs. The

ranking of constraints that generates a UR–SR mapping depends on what the

UR is, but the learner again only has access to overt forms. This interdepend-

ence of the grammar and the lexicon has been addressed in various ways. In the

surgery learning algorithm (Tesar et al. 2003), when BCD runs into inconsist-

ency in the set of winner–loser pairs – for example, if two constraints are left

that have opposite winner–loser preferences – the learner uses that dead end as a

cue that the lexicon must be modified. Lexicon updates target each (alternating)

morpheme in turn until the inconsistency is resolved, after which the winner–

loser pairs containing that morpheme are adjusted to reflect the change.

The interdependence problem has also been addressed by drawing on the

learner’s prior knowledge of phonotactics. Tesar and Prince (2007) explore this

idea with an algorithm that first establishes a preliminary constraint ranking in a

stage of phonotactic learning in which all URs are assumed to be identical to the

SRs. Because we know the grammar accepts the SR, then if that SR were a UR

we can assume the grammar would map it faithfully (since unfaithful mappings

only occur when underlying structures cannot surface).

As an example, consider a target language in which codas are devoiced. A

dataset of SRs for this language is given in (22). At this stage, the learner has no

knowledge of morphological structure (i.e., all SRs are taken to be distinct and

monomorphemic).

(22) {tate, date, tade, dade, tat, dat}

Starting with the hierarchy in (23) in which all markedness outranks faithful-

ness, the learner uses BCD to find the most restrictive ranking that maps all SRs

to themselves.13 The form [dat], for example, presents a problem because its

violation of *Voice makes it less harmonic than [tat] according to the initial

ranking. Yet both are grammatical. Demoting *Voice below Ident(voice) solves

this problem.

(23) �Voice; �SyllableFinalVoice; �IntervocalicVoicelessg≫ Ident voiceð Þf

And so on, until the learner arrives at the ranking in (24).

(24) �SyllableFinalVoice≫ Ident voiceð Þ≫ �Voice; �IntervocalicVoicelessgf

13 This is a commonly held assumption about the initial state of the learner. See Smolensky (1996)
for motivations and Hale and Reiss (1998) for counterarguments.
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This preliminary ranking is then refined by bringing in knowledge of the

morphological structure of the SRs and therefore witnessing alternations. The

data at this point incorporates information about morpheme boundaries and

identity:

(25) tad1-e5; tat2-e5; dad3-e5; dat4-e5; tat1; tat2; dat3; dat4gf

When a feature is observed to alternate, the learner considers all possible

candidates for the UR. For example, the UR of morpheme 1 is either /tad/ or

/tat/. With these hypotheses, the learner can test its current grammar (24) with

the possible mappings in (26).

(26) a. Hypothesis A :=tad=→ ½tat� and=tade=→ ½tade�
b. Hypothesis B :=tat=→ ½tat� and=tate=→ ½tade�

As shown in Tables 4 and 5, Hypothesis A succeeds under the current constraint

ranking, but Hypothesis B fails. The learner can thus conclude that Hypothesis

A is correct and the UR is /tad/.

Stepping back, the broader intuition here is that the hypothesis that /tat/ is the

UR can only succeed if this language has intervocalic voicing, a possibility

ruled out by the phonotactics (i.e., the existence of [tate]). But the devoicing

required by the UR /tad/ is consistent, since no SRs end in voiced obstruents.

Table 4 Testing Hypothesis Awith grammar (24)

UR: /tad/ *SyllableFinalVoice Ident(voice) *Voice *IntervocalicVoiceless
[tad] *! *

☞[tat] *

UR: /tad-e/
☞[tade] *

[tate] *! *

Table 5 Testing Hypothesis B with grammar (24)

UR: /tat/ *SyllableFinalVoice Ident(voice) *Voice *IntervocalicVoiceless
[tad] *! *

☞[tat]

UR: /tat-e/
[tade] *! *

☞ *[tate] *
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In this simple example, the initial constraint ranking gleaned from the

phonotactics did not have to be revised, but more realistic cases will involve

multiple faithfulness constraints that cannot be ranked with respect to each other

based on phonotactics alone. As a result, the initial ranking may fail to generate

all of the mappings for the hypothesized URs. In such a case, the mismatches

between the observed winners and the optimums can again be used by BCD to

revise the initial ranking, with the revision that succeeds being the indicator of

which hypothesized UR is correct. The interdependence problem thus points to

its own solution, as inconsistencies in grammar–lexicon combinations provide

the cues to revise both in an error-driven feedback loop.

The utility of assuming that if a form X is grammatical then so must be the

mapping X → X is explored further in Tesar’s (2014, 2017) subsequent work on

output-driven maps.14 The designation of a map as output-driven refers to the

following entailment relation: “for every grammatical candidate A→X of the

map, if candidate B→X has greater similarity than A→X, then B→X is also

grammatical (it is part of the map)” (Tesar 2017: 150). Similarity here refers to

the number of disparities (i.e., feature changes) between inputs and outputs. For

example, páká→ paká: has two disparities (one stress, one length) and paká→

paká: has one (length only). If the map is output-driven, then the inclusion of

páká → paká: implies the inclusion of the more similar paká → paká:.

Tesar’s thesis is that the property of being output-driven imposes structure on

the learner’s hypothesis space that can be exploited during its search for the

correct grammar and lexicon. Importantly, output-drivenness is a property of

the map itself, not of the OT grammar that generates it (see Section 7 for more

on this idea). This is what is meant by structuring the hypothesis space. The set

of maps that can be generated by OT grammars is large – on account of its

combinatorics (k! possible rankings of k constraints, though more than one

ranking may generate the same map) as well as its formal generative capacity

(more on this in Section 3.3.1). The learner’s assumption that its target grammar

can only generate a subset of those maps eliminates a great many hypotheses.

As in Tesar and Prince (2007), the output-driven learner (ODL) undergoes a

stage of phonotactic learning without any morphological awareness before

receiving information about alternations in order to identify URs. At this

stage, the entailment relation inherent to the output-driven property serves to

eliminate entire sets of possible URs all at once. To see how, consider an

observed SR like [paká:]. The learner constructs a hypothesis UR with only

one disparity relative to that SR, such as /paká/. If BCD then concludes that the

14 The term map here and elsewhere refers to the set of input–output string pairs generated by a
grammar (i.e., it refers to the grammar’s extension).
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mapping of /paká/ → [paká:] is inconsistent, the learner can reject the hypoth-

esis of /paká/ as well as any other UR hypotheses that are less similar to the SR

than /paká/ is (e.g., /pa:ká/, /paka/, /páka/, etc.).

From there, the learner can conclude that any feature value shared by all

remaining hypothesized URs must be present in the correct UR. Once an under-

lying feature value is set in this way, SRs in which that feature surfaces unfaith-

fully can provide further information about the correct ranking. For example, if

[páka] is an SR and the [ka] morpheme has already been identified as having the

UR /ka:/, then the constructed mapping /páka:/ → [páka] must be grammatical,

because any other possibility will involve more disparities. This mapping can then

be used to construct winner–loser pairs and adjust the constraint ranking if needed.

The use of inconsistency detection to identify environments in which a

feature is contrastive has precedent in the contrast pair and ranking (CPR)

information algorithm of Merchant (2008) and Merchant and Tesar (2008).

Contrast pair and ranking has the advantage of being able to set multiple

features at once by constructing local lexica for all possible settings of unset

features, but the ODL is ultimately more efficient given that the number of

lexica can grow quite large depending on how many features alternate.15

Looking beyond categorical grammars, the promise of probabilistic models

for handling gradient phonotactics (see Section 4) lead to their application to a

wider range of phonological learning problems, including the simultaneous

learning of grammars and lexicons. For example, Jarosz (2006a, 2006b) char-

acterizes this problem in the framework of maximum likelihood learning of

lexicons and grammars (MLG), in which each possible constraint ranking is

assigned a probability and the conditional probability of a candidate (given a

UR) is summed across all rankings for which it is the winner. Another probabil-

ity distribution across possible URs provides the conditional probability of a UR

given a morpheme. The learning problem is then a matter of identifying the

parameters for these distributions that maximize the likelihood of the training

data (= morphologically analyzed SRs and their frequencies). Enacting richness

of the base, the set of possible URs is rich, though not fully unconstrained. It is

generated from the SRs based on all possible feature variants that could generate

one of the observed SRs of the morpheme in question, as well as all possible

insertions and deletions that could be generated under some constraint ranking.

The learning algorithm is expectation maximization: starting from uniform

distributions, the parameters are iteratively adjusted until convergence (i.e.,

the change from the previous iteration is below some threshold).

15 The original ODL can only handle feature disparities between URs and SRs, putting aside the
possibility of insertions and deletions. Follow-up work by Nyman and Tesar (2019) addresses
that gap using a “presence feature” that signals the presence or absence of a segment.
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Jarosz (2009) further shows how MLG as a probabilistic learner subsumes

the kinds of ranking biases enacted by the OT learners discussed previously in

this Element. The resulting grammars are restrictive in the sense that likelihood

will be maximized by a grammar that maps as much of the rich base to observed

forms as possible (i.e., by not wasting probability mass on unobserved forms).

This works out to ranking markedness over faithfulness without an explicitly

encoded bias. Working instead with MaxEnt, O’Hara (2017) shows that an

explicit mechanism is also not needed for a probabilistic learner to learn abstract

URs (i.e., URs with a combination of features that never surface together in a

single SR), as these fall out naturally when observed gaps in segment distribu-

tions are minimized.

Another approach to UR learning has been the use of constraints on the URs

themselves (Zuraw 2000; Boersma 2001). Apoussidou (2007) makes use of

these lexical (or UR) constraints in an online error-driven learner. Lexical

constraints prohibit a particular meaning–form pairing in the lexicon; for

example, Apoussidou proposes the constraint in (27) as part of the grammatical

stress system of Modern Greek:16

(27) *|θalas-| “sea”: Do not connect the meaning “sea” to |θalas-|

Each candidate UR has its own constraint. Learning then proceeds through a

recognition stage and a virtual production stage. Recognition involves an RIP-

like process of mapping an SR to its optimum candidate (UR, SR, meaning)

triplet. Virtual production checks which triplet the current grammar selects for

that particular meaning. If the same candidate is selected in recognition and

virtual production, no change is needed. Otherwise, the error signals a con-

straint reranking (via the GLA).

Lexical constraints prohibiting (or requiring) particular URs in a particular

language clearly cannot be part of an innate and universal CON. Though no

algorithm is given, Apoussidou (2007: 170) suggests they could instead be

induced whenever a new meaning–form combination is encountered. Going

further, Nelson (2019) provides a method for inducing lexical constraints that

also addresses the related problem of morpheme segmentation. Given an SR

and the unordered set of morphemes it contains, lexical constraints are induced

based on all possible segmentations of that SR. For example, if the SR [abc]

contains two morphemes (M1 and M2), the possible segmentations are [ab-c]

and [a-bc], and so the needed lexical constraints include M1=ab (i.e., M1 must

be [ab]), M1=c, M1=a, M1=bc, etcetera.

16 Vertical bars are used to signify underlying forms, to distinguish them from two other levels of
representation: surface forms (e.g., /(θá.la)sa/) that contain unpronounced hidden structure and
overt pronounced forms (e.g., [θálasa]).
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As both of these solutions depend on the UR being one of the SRs (i.e., the

basic alternant constraint; see Kenstowicz and Kisseberth 1979: 202), abstract

URs that contain underspecified segments will present a challenge.17 Pater et al.

(2012) address this by allowing for different URs to be selected in different

contexts (i.e., overspecification).18 With the inclusion of the UR constraints,

their MaxEnt grammar identifies the most likely (UR, SR) combination for a

given meaning in a way that captures broader generalizations in the language

while still allowing for non-alternating morphemes (e.g., the three-way voicing

contrast in Turkish analyzed by Inkelas et al. 1997 as a case of

underspecification).19

Lastly, the hidden structure learning problem has also been explored in the

context of the intermediate representations of derivational theories such as

stratal OT (Bermúdez-Otero 1999, 2003; Kiparsky 2000) and HS (McCarthy

2000). Staubs and Pater (2016) show how the order of operations in an HS

derivation can be established through the constraint weights assigned by a

MaxEnt learner tasked with maximizing the likelihood of the observed SRs.

Following Eisenstat (2009), they take the probability of an SR to be the summed

probability of the UR–SRmappings that could have generated it. Extending this

to HS, the probability of an SR is the summed probability of the derivations that

could have generated it. A derivation’s probability is the joint probability of its

steps, with the probability of a step being the SR’s share in the distribution over

the candidate set. The initial step makes use of UR constraints to identify the

most likely UR for a given meaning. Following assumptions of HS, subsequent

steps identify the most likely candidate among a set generated by applying a

single operation (e.g., one added stress or segment). Nazarov (2016) and

Nazarov and Pater (2017) extend this approach to stratal OT, in which a

word-level grammar is followed by a phrase-level one in which the constraint

ranking/weighting can potentially differ.

As the scope of the work in this section has made clear, constraint-based

grammars have enabled great progress on a variety of learning challenges,

including noisy data and hidden structure. Following the theoretical assumption

that the constraint set CON is innate and universal, the learners discussed

previously in this Element are all in practice provided with the constraints

17 Recent work by Wang and Hayes (2022) systematically explores the learning challenge of
abstract URs by generating UR candidates for an EM-MaxEnt learner at different levels of the
UR abstractness hierarchy discussed by Kenstowicz and Kisseberth (1977).

18 The lexical constraints are still provided to their learner, but the possible URs are generated in a
manner similar to Jarosz (2006a, 2006b). See also Eisenstat (2009).

19 For an alternative approach to learning underspecification, see Belth (2023) for a modular learner
that constructs a lexicon in an online fashion using the tolerance principle (Yang 2016) as a cue
for when to abstract an underspecified UR from the observed surface variants.

24 Phonology

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
42

04
02

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009420402


relevant to the patterns in question. The work reviewed in the next section

considers the alternative possibility that the constraints themselves are also

learned, creating the potential for future work to integrate such a step into

methods for grammar and lexicon learning.

3.2.3 Learning Constraints

Ellison (1991, 1992) describes an MDL approach to learning the inviolable

constraints on a language’s representations assumed by work in declarative

phonology. As discussed in Section 2 in the context of learning rule-based

grammars, MDL assesses a hypothesized grammar in terms of the size of the

grammar itself as well as the encoding of the data with respect to that grammar,

with the goal ofminimizing that combined sum. A constraint template is assumed

so that the cost of the template can be levied once regardless of how many

constraints instantiate it. Constraints are selected iteratively, such that the value

of adding each constraint can be assessed in comparison to a version of the

grammar that lacks it. The search for constraints is terminated when the grammar

can no longer be improved, meaning the cost of adding another constraint is not

sufficiently balanced by a reduction in the cost of encoding the data.

Turning now to the learning of violable constraints, the highly influential

MaxEnt phonotactic learner of Hayes and Wilson (2008) learns both the

constraint weights and the constraints themselves. As with the MDL learner

just described, the MaxEnt learner works from a constraint template in the form

of a sequence of feature matrices bounded by a specified length. Constraints are

selected from this hypothesis space using the heuristics of accuracy and gener-

ality. A constraint’s accuracy is defined as an observed/expected (O/E) ratio of

violations in the data under the currently hypothesized grammar. Generality

means priority is given to constraints that are shorter and that include larger

natural classes. The current constraint set is reweighted with each new con-

straint addition, and the search terminates when no constraints are left that are

sufficiently accurate (or when a grammar of a designated size has been found).20

As a phonotactic model, MaxEnt interprets well-formedness as a probability

distribution over all possible SRs. Since the focus is only on SRs, a candidate’s

probability is not conditioned on a particular UR, and faithfulness constraints

play no role (i.e., only markedness constraints are learned). An individual SR’s

probability represents its share of the total maxent values (= e raised to the

negation of the harmony score defined previously in Section 3.1) of all possible

SRs. The learning objective is then to find the weights that maximize the

20 For an alternative approach that conceives of the phonotactic grammar as a generative process
instead of a set of constraints, see Linzen and O’Donnell (2015) and Futrell et al. (2017).
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probability of the observed forms and minimize the probability of unobserved

ones. Modifications and extensions of this approach have been applied to a

range of phonological learning problems, including learning the features as well

as the constraints (Nazarov 2016), distinguishing between true constraints and

accidental gaps (Wilson and Gallagher 2018), the learning of nonlocal con-

straints (Gouskova and Gallagher 2020), the potential for a naturalness bias to

rule out “accidentally true” constraints that hold without exception in the data

but are not part of the speakers’ grammatical knowledge (Hayes and White

2013), and the use of n-gram probabilities as a way of reducing the size of the

hypothesis space of constraints (Nelson 2022).

3.3 Theory Comparison

To wrap up the discussion of constraint-based theories of phonology, this section

turns to the use of computational and quantitativemethods for theory comparison,

including the comparison between rule- and constraint-based theories as well as

comparisons among different constraint-based theories. These comparisons have

been made using a variety of considerations, including formal complexity, learn-

ability and convergence results, and expressivity with respect to questions of

long-standing theoretical interest. In what follows, these will each be discussed in

turn.

3.3.1 Complexity

The most common criteria by which rule- and constraint-based grammatical

formalisms have been compared to each other include empirical adequacy,

explanatory redundancy, and potential for corresponding learning algorithms,

but computational complexity has also played a role. Within computational

phonology, the well-known result that SPE grammars are regular relations

provided the rules do not reapply to their own structural changes (Johnson

1972; Kaplan and Kay 1994) leads to the inevitable question of whether OT

grammars preserve that property.21 In short, the answer is no, but a line of work

exploring different ways of implementing OT with finite-state machinery pro-

vided further insight into the sources of that increased power.

Gerdemann and Hulden (2012) provide a simple proof that OT is capable of

generating non-regular relations, using the example grammar shown in Table 6.

In the first tableau, the input /aaabb/ violates *ab and is mapped to the optimum

21 Kaplan and Kay (1994) establish this result using one-way FSTs, which are strictly less
expressive than two-way FSTs that can reread portions of the string. To reflect this distinction
in expressivity, the class of mappings Kaplan and Kay studied is sometimes instead called the
rational relations, with regular being reserved for the class generated by two-way FSTs (see
Filiot and Reynier 2016).

26 Phonology

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
42

04
02

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009420402


[aaa] in which both /b/’s are deleted. (For simplicity, DEP and Ident are not

shown, but these are assumed to be ranked above *ab such that candidates like

[aaacc] or [aaacbb] are also ruled out.) In the second tableau, the input /aabbb/ is

instead mapped to [bbb], in which the two /a/’s are deleted.

More generally, inputs of the form anbm will always be mapped by this

grammar to either an or bm depending on which is larger: n or m. When deletion

is the preferred repair for violations of *ab, optimization will insist on deleting

as few segments as possible. The relation generated by this grammar

(anbm→ an if m < n and anbm → bmif n < m) is not finite-state describable.22

A finite-state version of OT then must impose certain restrictions to ensure

the generated relations stay within the bounds of regular. For example, Ellison’s

(1994) implementation assumes (1) constraints are binary and regular (i.e., can

be represented with an FST that maps candidates to their lists of marks), and (2)

the candidate set produced by GEN is a regular language. Frank and Satta

(1998) show that an upper bound on constraint violations – after which the

grammar cannot make distinctions among candidates – suffices to make OT

finite-state describable. However, Riggle (2004) is able to relax some of these

restrictions by focusing on the set of contenders, or candidates that are not

harmonically bounded, and using a monolithic evaluator instead of a cascade-

style combination of individual constraints.23 Next, comparing finite-state

implementations of a parametrized metrical grid theory and an OT one (using

Table 6 Counterexample to optimality theory being
regular. Adapted from Gerdemann and Hulden (2012)

UR: /aaabb/ *ab MAX

[aaabb] *!
☞[aaa] **
[bb] **!*

UR: /aabbb/ *ab MAX

[aabbb] *!
[aa] **!*
☞[bbb] **

22 See also Hao (2019) for a comparable result for HS.
23 See Riggle (2004) and Chandlee and Jardine (2022) for more detailed discussions of the finite-

state OT literature.
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Karttunen’s 1998 lenient composition operator to combine the constraints),

Idsardi (2009) shows that the latter is far less efficient, requiring forty-five

states compared to the two states required by the “rule-based” machine. And in

more recent work, Lamont (2021) shows that OTcan generate context-sensitive

languages with constraints banning subsequences, and Lamont (2022) shows

that even with simple constraints, OT can actually generate non-pushdown

functions.

The regular/non-regular divide is particularly relevant for finite-state approaches,

but the generation problem in OT has been a subject of broader concern. Eisner

(2000) proves that OT is NP-hard by transforming the generation problem into

the directed Hamiltonian graph problem, which is itself NP-complete. The

proof assumes an OT-variant called Primitive OT (Eisner 1997), in which

constraints dictate the extent to which constituents can overlap on an autoseg-

mental-like timeline, but Idsardi (2006) shows that the same result holds

assuming the more standard MAX, DEP, unigram and bigram markedness

constraints, and self-conjoined constraints of the sort proposed by Ito and

Meester (2003) to handle co-occurrence restrictions (though see Heinz et al.

2009 and Kornai 2009 for critical responses). More recently, Hao (2024)

shows that the universal generation problem in OT (i.e., generation when

CON is not fixed but provided as an input) is PSPACE-complete.

As results such as these make clear, the complexity of OT depends on what, if

any, restrictions are assumed for the interacting components of GEN, EVAL,

and CON. With respect to CON in particular, one approach to formalizing such

restrictions has been the use of a constraint definition language (CDL) that

specifies the syntactic primitives and rules of combination for constraints, as

well as the means by which they calculate violation marks (see de Lacy 2011 for

more discussion of CDLs). For example, Potts and Pullum (2002) use model

theory to make the meaning of OT constraints more precise, in particular by

characterizing candidates as a class of structures and defining a description logic

for the constraints over that class (more will be said about model theory in

Section 7.3). They show that a wide range of constraints can be thus described

using a limited modal logic, while certain constraints types (e.g., output–output

identity and inter-candidate sympathy) cannot (see Riggle 2004 and Jardine and

Heinz 2016b for additional examples of CDLs). Given how much progress in

OT has been driven by proposed additions to CON, CDLs offer a valuable

means of studying the computational consequences of such proposals.
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3.3.2 Learnability

This section touches on how learning and learnability have been used to compare

constraint-based theories. For more comprehensive surveys of these topics,

readers are referred to Tesar (2007), Heinz and Riggle (2011), Albright and

Hayes (2014), Tessier (2017), Jarosz (2019), and Heinz and Rawski (2022).

Complexity results of the sort discussed in the previous section have also been

established for various learning problems. But Magri (2013a) argues that the

relevance of intractability results (which are not unique to OT) is less about

choosing among grammatical formalisms and more about their implications for

child language acquisition. For example, the strong consistency problem (i.e.,

finding a grammar that is consistent with most of the data) in OT is intractable,

because the cyclic ordering problem (shown by Galil and Megiddo 1977 to be

NP-complete) can be reduced to it. Theweak version, inwhich the algorithm only

needs to detect inconsistency without returning a grammar, is tractable (Tesar and

Smolensky 2000), but as discussed previously (Sections 2 and 3.2.1), the phono-

logical learner also needs to be concerned with the grammar’s restrictiveness on

account of the subset problem. Magri shows that even when assuming consistent

data, the subset problem in OT (i.e., minimize r-measure) is also intractable.

The implications of these results are as follows. Despite the common assump-

tion that CON is innate and universal, constraint demotion algorithms assume

an arbitrary constraint set and therefore only make use of the logic of ranking

and optimization itself. That logic is sufficient for the weak consistency prob-

lem, but the subset problem demands more, and this is true for both batch

learners and error-driven online ones. As the latter type are a better model of

acquisition stages, Magri conjectures that their limitations with respect to

finding restrictive grammars may be overcome by making use of the added

structure that distinguishes linguistically plausible rankings (defined, e.g., in

terms of particular feature interactions).24

With respect to modeling acquisition, Magri (2012) also argues that both

constraint demotion and promotion are desirable, if not necessary to capture

acquisition trajectories (e.g., the use of different repair strategies over time).

The GLA performs both of these operations, but it is not convergent in the

general case (Pater 2008). Magri (2012) shows that the issue is the balance of

promotion and demotion; the latter is needed to guarantee convergence, and so

the former cannot overwhelm its effects. A solution exists, however, in the form

of calibrating the amount p that winner-preferring constraints are promoted

24 This assumed interdependence of the learning mechanism and the patterns being learned is also a
theme of the learning research grounded in formal language theory, to which we will turn in
Section 7.
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such that it satisfies the formula in (28), where l is the number of un-dominated

loser-preferring constraints and w is the number of winner-preferring con-

straints. Loser-preferring constraints are all demoted by a fixed amount.

(28) p <
l

w

Magri argues that the resulting proof of efficient convergence means the GLA’s

lack of convergence cannot be used as evidence in favor of (MaxEnt-)HG – for

which error-driven learners have also been proposed (Jäger 2007; Jesney and

Tessier 2009; Tessier 2009; Boersma and Pater 2016, but see alsoMagri 2016) –

though the desirability of promotion is itself an argument for numerical ranking,

a requirement for the calibration solution. Magri (2013b) further shows that any

instance of the OT ranking problem can be solved by converting it into an

instance of the HG weighting problem, countering previous arguments that

HG’s affinity for machine learning algorithms is evidence of its computational

superiority over OT. As a demonstration, he shows how the GLA revised with

the calibrated promotion amount can be reinterpreted as the perceptron algo-

rithm used to find the weight vectors in HG.

Nonetheless, arguments about convergence and online learning are not the

only consideration in the debate over weighted versus ranked constraints. The

next section will turn to questions of expressivity, particularly with respect to

the handling of gradience, variation, and exceptions.

3.3.3 Expressivity

Constraint-based phonotactic models have served as a proving ground for well-

known phonological principles such as the sonority sequencing principle (see

Daland et al. 2011) and the obligatory contour principle (OCP) (Leben 1973).

The latter in particular has received a lot of attention in model comparison

studies exploring different options for the source of gradient well-formedness.

Frisch et al. (2004) propose that the co-occurrence restrictions on consonants in

Arabic roots (Greenberg 1950) are best explained with a gradient version of the

OCP, for which the probability of a violation is a function of the consonants’

similarity. Gradient constraints reflect speakers’ knowledge of which patterns

are over- and underrepresented in their lexicons, quantified as the ratio of the

number of observed (O) consonant pairs to the number of pairs that would be

expected (E) if consonants combined freely. In their analysis of Arabic, they

show that O/E ratios decrease as similarity increases, a level of detail missed by

categorical constraints.

They define the similarity of two consonants in terms of shared natural

classes. The effect of subsidiary features (i.e., non-place features that influence
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the strength of the OCP–place effect) is then determined by the language’s

inventory. But Coetzee and Pater (2008) argue that this is too restrictive and

cannot account for the role of subsidiary features in the OCP effects in Muna

(Austronesian). Their own approach, situated in HG, instead allows for the

relevant subsidiary features to be identified for each place by providing con-

straints for all possible place/subsidiary feature combinations. Taking a differ-

ent tack, Anttila (2008) demonstrates that categorical ranked constraints can

account for gradience by relating well-formedness to complexity, with com-

plexity defined in terms of how many constraints need to be ranked below

faithfulness for a form to surface faithfully. This leads to the complexity

hypothesis, which states that O/E is inversely correlated with grammatical

complexity: the more complex a structure is, the more underrepresented it

will be. In addition to modeling gradience with a categorical grammar, this

approach offers clear typological predictions for quantitative patterns: those that

obtain regardless of how the constraints are ranked are predicted to be universal,

with language-specific variation limited to complexity orderings that depend on

the constraint ranking.

This cluster of studies demonstrates the use of O/E values as a test for how

well a model’s predictions align with reality. However, Wilson and Obdeyn

(2009) argue that O/E is not a statistically sound estimate of the OCP’s effects,

because it does not account for the interaction of other constraints that might

affect the observed frequency of a consonant pair (e.g., positional constraints for

the individual members of the pair). Rather than attempting to isolate the effect

of a single constraint, competing models should be assessed based on their fit to

the data in its entirety. At the same time, just searching for the model that best

fits the data can lead to the selection of a model that is more complex and

therefore less restrictive as far as the limits it places on cross-linguistic vari-

ation. They advocate instead for prioritizing restrictiveness even at the cost of

fit – for example, by using the Laplace approximation to combine the measures

of data fit and model complexity.

They use this technique to compare MaxEnt grammars with the different

versions of OCP–place discussed previously in this Element – namely Frisch

et al.’s (2004) similarity and Coetzee and Pater’s (2008) acceptability – with

their own proposed version that employs language-specific weighted features in

which the similarity of two sounds is the sum of the weights of their shared

features. Apparent differences in the effect of subsidiary features are explained

by the different weights on place features, not as interactions of these feature

types. If it appears that subsidiary features contribute differently across places,

it is because their influence will be more prominent with low-weighted place
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features but masked with high-weighted ones. Their weighted features model

outperforms the others on the same test cases from Arabic and Muna.

Another prominent argument in favor of weighted constraints is their ability

to model the cumulative effects of violating multiple markedness constraints, in

contrast to ranked constraint grammars in which only the highest-ranking

decisive constraint violation matters (see Pater 2009). Because of cumulativity,

it is possible for multiple violations of lower-weighted constraints to have a

greater effect than more highly weighted ones. It is also possible for single

violations of multiple lower-weighted constraints to “gang up” and have more

influence than a single more highly weighted constraint. In HG, the harmony of

a candidate that violates multiple markedness constraints reflects additive (or

linear) cumulativity compared to a candidate that violates only one of them. But

this is not necessarily the desired result. In artificial grammar learning (AGL)

experiments, Breiss (2020), Durvasula and Liter (2020), and Breiss and

Albright (2022) all found evidence that cumulative markedness is greater

than the sum of its parts: forms that violate multiple constraints appear to be

subject to an added penalty over and above the contributions of the individual

constraints.

To test different theories’ ability to capture this effect of superlinearity, Smith

and Pater (2020) compare the performance of stochastic OT, noisy HG, and

MaxEnt grammars with the variation of schwa deletion in French. The likeli-

hood of a schwa deleting is conditioned by two contextual factors: whether the

following syllable is stressed and whether the schwa follows one or two

consonants. They compared the models’ fit on experimental data in which

participants indicated whether they would pronounce a schwa in various phono-

logical contexts and found that MaxEnt and noisy HG had the greatest success

due to their ability to accommodate superlinearity. Breiss and Albright (2022)

also found that their experimental results were compatible with a MaxEnt

grammar under certain weighting conditions, and further that the strength of

the superlinearity effect of two constraints depends on the strength of their

restrictions (i.e., how many exceptions are present in the training data).

How to handle lexical exceptions to otherwise productive patterns has itself

been a prominent question of interest. It has been shown that stochastic OT’s

ranking mechanism allows for a grammatical solution via dually listing mor-

phologically complex forms that vacillate and singly listing those that do not

(Zuraw 2000; Hayes and Londe 2006). For non-derived forms, however,

Moore-Cantwell and Pater (2016) propose a MaxEnt grammar that includes

constraints indexed to particular lexical items. Shih and Inkelas (2016) also call

on MaxEnt to model lexically conditioned variation in Mende (Mande; Sierra

Leone) tonotactics, in which the relative frequency of different tone melodies
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depends on part of speech. Their multilevel model includes a base grammar that

predicts the overall distribution of tone patterns adjusted by a set of word class-

specific weights for the same set of constraints. Similarly, Zymet (2018, 2019)

argues that as a single-level regression model, MaxEnt struggles to balance the

contributions of grammatical and lexical constraints by treating them as equally

likely sources of explanation for the statistical patterns in the data. In contrast,

hierarchical regression’s nesting structure allows the grammar’s contribution to

be prioritized by modeling general constraints as fixed effects and lexical

constraints as random effects. The overall rate at which a generalization holds

across the lexicon is captured as the fixed effect, with random effects accounting

for lexically specific deviations from that rate.

As much of the work reviewed in this section makes clear, capturing non-

categorical aspects of phonological knowledge has been an area of great

interest. The next section focuses on one particular type of knowledge –

phonotactics – and the various ways lexical statistics and other sources of

information have been used to account for the observed gradience in acceptability

judgments.

4 Gradient Acceptability and Lexical Statistics

It has long been recognized that speakers have knowledge of which sound

sequences are and are not possible in their languages (i.e., phonotactic know-

ledge). A classic example is blick versus *bnick; neither is an actual word of

English, but speakers reliably recognize that only the former is a possible word

(Chomsky and Halle 1965). Put another way, blick is treated as an accidental

gap in the lexicon, whereas *bnick is prohibited from the lexicon due to some

type of grammatical constraint. The observed contrast between pairs like blick/

*bnick suggests a categorical model in which words are either allowed or

disallowed based on their particular sequencing of sounds, and the presence

of a single disallowed sequence is enough to condemn the entire word. Indeed

blick and bnick are nearly identical, so they cannot be bad across the board.

Rather, the problemwith *bnick is isolated to a subword component, namely the

sequence #bn.25

Coleman (1996) tested the psychological reality of such constraints by

collecting acceptability judgments from English speakers for matched nonce

words with and without a phonotactic violation (e.g., *mlisless versus glisless).

The task was categorical (e.g., forced choice response to whether the word is or

could be a word of English), and a word’s overall rating was calculated as the

proportion of participants who accepted it. Contrary to the predictions of the

25 Following the conventions of SPE, # is used to mark the word boundary.
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categorical model, the results indicated that a single disallowed subword com-

ponent does not in fact make the word completely unacceptable. In addition,

words that did not violate any constraints but were made up of low-frequency

components were rated lower than words with high-frequency components,

despite both word types being fully grammatical.

This effect of frequency is taken as evidence that speakers are not just aware

of what is and is not possible, but can draw on more detailed knowledge of

distributional patterns to assess the gradient acceptability of actual and novel

words. But this in turn raises the question of which lexical statistics best account

for this knowledge (i.e., what frequencies are speakers attuned to). A baseline

approach defines phonotactic probability with an n-gram model in which

probabilities are assigned to sequences of length n based on their frequency in

a training corpus. For example, in a bigram model (n = 2), the probability of the

sequence bl is calculated as in (29),

(29) P blð Þ ¼ C blð Þ
C bð Þ

where C(bl) is the number of times bl appears in the corpus and C(b) is the

number of times b appears (i.e., the unigram count of b).26 The probability of an

entire word is the product of the probabilities of its component bigrams. The

difference in acceptability between blick and *bnick then would be accounted

for if P blð Þ > P bnð Þ according to a corpus of English.

This baseline model, however, fails to capture the fact that bn as a sequence

is not itself problematic (e.g., subnet, abnormal, abnegate). It is only a

problem in a particular position, namely the beginning of the word. One

way to address this flaw would be with a trigram model, in which case we

would expect P #blð Þ > P #bnð Þ.27 But Vitevitch et al. (1997) go further to

assess the role of position in phonotactic acceptability. They constructed

nonce CVC syllables of high and low probability, with probability determined

using both transition (i.e., bigram) probabilities and the probabilities of seg-

ments in particular positions (initial-medial-final). Bisyllabic forms were then

created that varied in stress placement and covered all possible combinations of

high- and low-probability syllables. Their task elicited gradience directly by

asking participants to rate words on a scale from 1 (Good) to 10 (Bad). They

found that stress placement as well as probability played a role in these

26 More specifically, this is the conditional probability, P(l | b), or the probability of seeing l given
that you just saw b. The ratio of counts can be interpreted as: of all the times something followed
b, how often was that something an l?

27 Indeed wewould expect P(#bn) = 0, given the absence of English words that start with bn, but the
use of smoothing techniques to assign nonzero probabilities to all sequences is common (see
Jurafsky and Martin 2008).
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judgments: words with first-syllable stress were rated higher than forms with

second-syllable stress, and words with two high- (low-) probability syllables

were rated highest (lowest) overall.

Similarly, the probabilistic parser of Coleman and Pierrehumbert (1997)

incorporates the role of prosodic structure via a (non-recursive) context-free

grammar in which the non-terminals encode stress, syllable, and positional

information. In the example rule in (30), S, O, and R represent syllable, onset,

and rhyme, respectively, and the “sf” designation further indicates that these

components are stressed and final.

(30) Ssf →Osf Rsf

Each word component is assigned a path based on the rules that generate it, and

the probability of a path is computed from a parsed training corpus. The

probability of an entire word is then the product of its component paths.

While the probability of a word’s worst component was found to be significantly

correlated with the experimental results of Coleman (1996), the strongest

predictor was the log probability of the entire word (with log probabilities

being used to address the effect of word length). In this global and probabilistic

approach to word acceptability, the presence of well-formed subword compo-

nents can mitigate the effect of unattested or infrequent ones.

Another whole-word conception of likelihood is in terms of overall similarity

to the existing words in the lexicon. Greenberg and Jenkins (1964) define this

similarity in terms of the number of substitutions needed to convert a nonword

into an actual word, and Ohala and Ohala (1986) provide experimental evidence

that English speakers are in fact sensitive to varying degrees of similarity among

nonwords.28 This conception of a word’s similarity has been extended to define

its neighborhood density, or the number of existing words it is similar to. For

example, blick is one substitution away from a number of existing words such as

brick, black, block, slick, click, flick, blip, etcetera. How similar an existing

word has to be to count as a “neighbor” can vary, but a common definition is that

it requires a single string edit operation, to include additions and deletions as

well as substitutions.

Of course, phonotactic probability and neighborhood density are correlated –

forms with low- (high-) probability subword components will also have small

(large) neighborhoods –making it difficult to tease apart which one is responsible

for speakers’ acceptability ratings. The study of Bailey and Hahn (2001), how-

ever, aimed to do exactly that. Moving beyond the “single string edit” definition

28 See also Keane et al. (2017) for a comparison of mathematical approaches to characterizing hand
shape similarity in sign languages.
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of a neighbor, they instead propose a more sophisticated generalized neighbor-

hood model, in which edit operations are weighted to reflect the phonological

distance between two forms (e.g., back differs from both pack and sack by one

substitution, but the difference between /b/ and /p/ is smaller than the difference

between /b/ and /s/ in terms of shared features). They found that both phonotactic

probability and lexical neighborhoods have significant effects on acceptability,

and that one is not subsumed by the other. However, given that less than half of

the variance in their collected ratings was accounted for with these measures

combined, they ultimately conclude that there is still more to understand about

these factors in particular and gradient acceptability in general.

When teasing apart the relative influences of phonotactic probability and

neighborhood density, Shademan (2006) argues for a need to consider task

effects. In particular, the inclusion of actual words in the set of experimental

stimuli (as in Bailey and Hahn 2001) may amplify lexical effects, as was

previously suggested by Vitevitch and Luce (1998) in the context of word-

processing tasks. Shademan’s own experiments tested words in the four logic-

ally possible combinations of high/low probability and high/low lexical

similarity. When only nonce words were included, probability had a greater

correlation with the acceptability ratings (scored from 1 to 7) than lexical

similarity. When both actual and nonce words were included, the effect of

lexical similarity became more pronounced, though it still was not as strong

as the effect of probability.

Even with their relative roles still in question, phonotactic probability and

neighborhood density do not tell the whole story of gradient acceptability. Other

work has identified significant contributions of phonological knowledge beyond

prosodic structure. Hay et al. (2004) tested nonce words containing nasal-obstruent

clusters that vary in their frequency (e.g., [nt] is very frequent, [mθ] is unattested,
and [nf] is attested but infrequent). Cluster frequency was highly correlated with

participants’ acceptability ratings (which were determined on a scale of 1 to 10), at

least for the attested clusters. The unattested clusters unexpectedly defied this

pattern, being rated higher than some low-probability attested clusters. A follow-

up experiment suggested that the additional information speakers might be incorp-

orating into their assessment of nonce word likelihood includes morphological

analysis (i.e., parsing unattested clusters as spanning a morpheme boundary) as

well as long-distance phonological effects like the OCP.

Another potentially valuable source of information missed by basic n-gram

models is the feature-based representations of segments, as in the Hayes and

Wilson (2008) phonotactic model (discussed previously in Section 3.2.3). To

further explore this potential, Albright (2009) uses the probability of sequences

of natural classes in addition to specific segments to estimate the likelihood of
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an onset cluster that is not present in a training corpus. For example, both [bd]

and [bn] are unattested onsets in English, which would be treated similarly by a

bigram model. By generalizing over features instead, Albright’s model predicts

the preference for [bn] because it has more features in common with attested

onsets compared to [bd].

Yet another line of research has instead questioned the initial assumption that

gradient acceptability ratings reflect gradient grammatical knowledge. In add-

ition to the explanatory power of phonotactic probability and neighborhood

density not being complete, Gorman (2013) shows that it is not even consistent,

as in some cases these gradient models are outperformed by a baseline categor-

ical model that only considers whether a word includes an illicit component.

Like Shademan (2006), Gorman suggests the potential for task effects to play a

role in gradient acceptability, including the implications of asking participants

to use a scale in the first place (e.g., Armstrong et al. 1983 show that when given

the option to use intermediate ratings, participants will provide gradient judg-

ments on how odd or even a number is, even though these properties are

categorical by definition).

Kahng and Durvasula (2023) also directly challenge the assumption that

gradient acceptability reflects an underlying grammar of gradient generaliza-

tions, arguing that the perceptual system introduces bias and variance that can

influence the cline of acceptability. In their experiment, Korean speakers rated

forms with illicit clusters lower than those in which a vowel breaks up the

cluster. More surprising, clusters with [c] as the first consonant were rated

higher than those with [b] as the first consonant, even though both clusters are

unattested. This discrepancy is hard to explain as a gradient generalization. A

feature-based approach would actually predict [bC] to be better than [cC], since

the former has more features in common with attested sequences (i.e., nasal

clusters are attested, so the voicing of [b] should give it an advantage).

In addition to rating acceptability, participants were also asked to identify the

medial vowel in the stimuli (with “no vowel” as an option). Factoring that

information into the analysis, the authors found that (1) participants rated forms

more acceptable when they heard an illusory vowel in the disallowed clusters,

and (2) they were more likely to hear illusory vowels in [cC] compared to [bC].

Based on this, they propose a model in which categorical grammatical con-

straints operate over a probability distribution of perceptual representations.

Hearing an illusory vowel in illicit forms results in a perceived licit form that the

grammar recognizes as well formed, with the likelihood of hearing these vowels

(i.e., the source of gradience) attributed to the perceptual system. They conclude

with a larger suggestion that proposals for gradient grammatical generalizations
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based on acceptability judgments should be supported by an investigation into

what participants actually perceived.29

How best to account for phonotactic knowledge remains an ongoing question

of interest. We will return to research on phonotactics – particularly how they

are learned – in Section 7.1. But first, the next two sections will briefly survey

the past and current phonological research employing information theory and

neural networks, respectively.

5 Information Theory

This section demonstrates the utility and flexibility of information theoretic

methods by highlighting examples of their application to a range of problems of

phonological interest.30

5.1 Features and Natural Classes

A great deal of work on phonological learning assumes – out of either principle

or convenience – an innate feature set that can be used to define natural classes

of sounds, but distributional data has also been used to induce those classes

directly. The four-step method proposed by Mayer (2020) makes use of vector

embeddings of sounds that represent the important aspects of their distribution,

such as counts of all trigrams that include the target sound (normalized using

positive pointwise mutual information, or PPMI). Phonological classes are then

identified using principal component analysis (PCA) to reduce dimensionality,

followed by k-means clustering over each principal component. Because the

number of clusters is not known in advance, the Bayesian information criterion

(BIC) (Schwarz 1978) is used to find the value of k that best balances model

complexity (= number of clusters) and fit (= distance from the cluster centroids).

Principal component analysis and clustering are performed recursively on

discovered classes until the latter only identifies a single cluster.31

5.2 Allophones and Neutralization

Peperkamp et al. (2006) use the Kullback–Leibler divergencemetric to compare

the distributions of pairs of segments, taking a high value to indicate an

allophonic relationship. Which of the pair is the allophone is determined

using relative entropy, assuming the allophone will have higher entropy than

29 See also Hale and Reiss (2008: chapter 5) for arguments that gradient acceptability should be
attributed to performance factors and is not the responsibility of the grammar.

30 See also Coleman (2014) for more context on the role of information theory in early generative
phonology.

31 The further problem of inducing features from the discovered classes is taken up by Mayer and
Daland (2020).
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the phoneme. To incorporate phonological knowledge, such as the fact that

allophones tend to be similar to their phonemes, as well as the contexts they

appear in, they add linguistic filters to weed out pairs of segments that happen to

meet their selection criteria but lack these relationships. One clue is if a third

segment exists that is intermediate between the two. Another is if the allophone

is more distant from its context than the phoneme from which it is derived. The

need for these filters means that distributional information alone is insufficient

to detect true allophonic relationships; prior knowledge about which pairs of

sounds might be allophones is also needed. Calamaro and Jarosz (2015) extend

this model to learn cases of neutralization, in which two sounds that otherwise

contrast are complementary in a particular context (i.e., have partially overlap-

ping distributions).

5.3 Phonotactics and Phonological Structure

Goldsmith and Riggle (2012) demonstrate the value of information theoretic

methods for assessing the need for and contribution of phonological structure.

The average positive log probability (i.e., entropy) of a dataset under a model

tells us how surprising or accidental the data is according to that model. The

difference in entropy between two models reveals the contribution (either

positive or negative) of added structure. For example, a comparison of unigram

(no structure) and bigram (linear structure) models can motivate something akin

to bigrammarkedness constraints: absent a constraint against a sequence ab, the

probability of that sequence is the product of the individual probabilities of a

and b (i.e., these are independent events). But the probability of ab being greater

or less than this joint probability signals an interaction between them (i.e., they

are more or less likely to occur together than apart).

Using Finnish vowel harmony as an example, they show that a bigram model

reduces entropy (i.e., assigns higher probability) compared to a unigram model,

justifying its added structure. From there they conduct further comparisons with

bigram models with more structure, such as simulating autosegmental tiers

using bigrams over classes. Following Goldsmith and Xanthos’s (2009) pro-

cedure for discovering phonological categories, they find the partition of

Finnish segments into two categories (each a probability distribution over its

segments) that maximizes the probability of the data (computed with a two-state

hidden Markov model). The resulting partition separates the inventory into

vowels and consonants. Repeating this process on just the vowels discovers

the categories of front and back that are relevant to Finnish’s vowel harmony

patterns, with neutral vowels given close to equal emission probabilities from

both states. With this model of the vowel tier, a word’s probability is the product
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of the probability of its sequence of vowels and the bigram probability of the

original string, in which all vowels are collapsed to the symbol V. Because

the resulting cost of this model is actually higher than the unaugmented bigram

model, the authors appeal to a Boltzmann model to combine unigram, bigram,

and vowel-to-vowel probabilities. By capturing nonlocal vowel-to-vowel depend-

encies as well as less commonly recognized local consonant–vowel effects, their

model provides a better fit than either the unigram or bigram models alone.

The broader contribution of this work is the use of information theoretic

model comparison methods to justify the increased complexity of added

structure rather than assuming its inclusion as a matter of course.32 These

methods also provide the opportunity to verify assumptions that theories

otherwise make for us by default – for example, that a language with vowel

harmony necessitates a tier-based representation in which consonants do not

contribute information. Goldsmith and Riggle’s (2012: 880) case study on

Finnish reveals the “more complex linguistic reality” that even in the presence

of vowel harmony, consonants may in fact condition the choice of a following

vowel.

6 Neural Networks

The potential of connectionist models of morpho-phonology has long been

recognized (e.g., Rumelhart and McClelland 1986; Gasser and Lee 1990),

though perhaps underutilized, with current developments sparking renewed

interest. Due to space limitations, this section will be necessarily brief, but

readers are referred to Alderete and Tupper (2018) as well as any of the works

cited in what follows for more context on and examples of the use of neural

networks for phonological learning, modeling, and theorizing. Pater (2019) in

particular provides an accessible introduction to neural networks and a valuable

discussion of their history and potential for greater integration with generative

linguistics research.33 Taking an even stronger stance on the future, Boersma

et al. (2020) argue that only a neural network model will be capable of accounting

for the full range of behavioral data associated with the phonetics – phonology

interface.

As articulated by Goldsmith (1992a), neural networks offer a means for

conducting phonological analysis without committing to typical generative

assumptions of a highly structured LAD, as well as a clearer route to drawing

connections with other areas of cognitive science. As an example, Goldsmith

32 As another example, Shih (2017) employs the Akaike information criterion (AIC) to justify the
inclusion of local constraint conjunction in HG to accommodate superlinearity effects.

33 See also the series of responses to Pater (2019) that appear in the same issue of Language
(Volume 95 Number 1).
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(1992b) presents a case study on using a neural network tomodel stress patterns.

The units of the network correspond to the bottom row of a metrical grid (i.e.,

syllables), with stress corresponding to local maxima (greater activation than

neighboring units). Activation may be inherent (determined by syllable position

or weight) or derived by lateral inhibition of a neighboring unit. Particular

settings of inherent activation and the inhibitory weights simulates effects like

alternating stress and avoidance of stress clash. These effects are achieved

through iterative recomputation until equilibrium, rather than through an

ordered derivation that manipulates hidden structure. Goldsmith and Larson

(1993) further show how syllabification can be modeled using activation to

encode a segment’s level of sonority, where a local maxima this time identifies a

syllable’s nucleus. Language-specific constraints or parameters are the result of

different weights that control the spread of activation through the network, as

well as activation thresholds that determine what counts as a peak.34

Given that the potential for these models to provide insight into language

acquisition and cognition depends on their interpretability, several researchers

have sought evidence of linguistic structure in the patterns of activation of

hidden layers. For example, Alishahi et al. (2017) present results from experi-

ments showing that phonemes can be recovered from the hidden layer repre-

sentations of a recurrent neural network (RNN) trained to map pairs of spoken

language and images into a semantic space. Success of phoneme recovery was

greatest with the early (first and second) hidden layers and then decreased with

each successive layer. Similarly, Smith et al. (2021) test a gestural harmony

(Smith 2018) account of stepwise vowel harmony with an encoder–decoder

model that maps strings of phonological units to sequences of articulator

movements. The decoder’s patterns of attention indicated that it was attentive

to states corresponding to harmony-triggering vowels throughout the span of

the word, consistent with the gestural overlap account of vowel harmony.

A clear advantage of neural networks for modeling acquisition is their ability

to work with raw speech data directly, rather than the discrete input representa-

tions assumed by the majority of phonological learning models. This potential

integration of phonetic and phonological learning is explored with a generative

adversarial network (GAN) in Beguš (2020a, 2020b). Generative adversarial

networks consist of a generator network tasked with generating data and a

discriminator network tasked with determining whether an input is real or

34 The use of activation values to encode variables like stress and sonority along with activation
thresholds enables a combination of gradient and discrete representations, an idea explored
further in the framework of gradient symbol processing (Smolensky and Legendre 2006;
Smolensky et al. 2014) and gradient harmonic grammar (Smolensky and Goldrick 2016; Hsu
2022).
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generated. The two networks are trained in tandem such that the discriminator’s

pattern of errors is used by the generator to improve its ability to generate data

(i.e., its ability to fool the discriminator). Beguš (2020a, 2020b) used English data
to train a GAN to generate voiceless stop-vowel sequences with and without an

initial /s/. In the generated samples, the voice onset time (VOT) of the vowel

was significantly shorter in the presence of the initial /s/, as predicted by the

English pattern of allophonic variation between aspirated and unaspirated

voiceless stops. To again address the question of interpretability and better

understand the actual learning mechanisms at work, Beguš proposes a logistic
regression–based method for finding correlations between the model’s latent

space and output variables such as presence versus absence of /s/.

In other work, neural networks are used to test the necessity of various types

of linguistic structure for learning phonological patterns. For example, Doucette

(2017) showed that phonotactic learning with an RNN is possible without

relying on repeated features (i.e., alpha variables), and Mayer and Nelson’s

(2020) RNN phonotactic learner performed comparably to Hayes and Wilson’s

(2008) MaxEnt learner on Finnish vowel harmony, even without the augmenta-

tion of a tier. Prickett and Pater (2022) likewise forgo the need for prespecified

constraints with an encoder–decoder model that achieved state-of-the-art accur-

acy on Tesar and Smolensky’s (2000) stress pattern dataset and correctly

generalized 112 of its 124 patterns. Delving further into learning biases,

Prickett (2019) shows that learning in a sequence-to-sequence model can

simulate proposed biases for learning process interactions, namely maximal

utilization (all rules apply maximally; Kiparsky 1968) and transparency (inter-

actions are not opaque; Kiparsky 1971). And Prickett (2021) argues that such

models also capture formal language theoretic complexity biases of the sort

discussed in the next section.

In addition to addressing the challenges of interpretability, future research

using neural networks will hopefully shed light on how the choice of architecture

and other design options affect what they can learn, as well as how these choices

relate to the kinds of grammatical distinctions that linguists make. One approach

to understanding neural networks has been to draw on tools from formal language

theory (see Merrill 2023 for an overview), which we turn to in the next section.

7 Formal Language Theory (FLT)

A formal language theoretic approach to phonology emphasizes the formal

structure of linguistic patterning in order to identify abstract universal proper-

ties, which in practice often relate to computational complexity. This formal

structure is recognizedbyfirst representingphonological patternswithmathematical
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objects. For example, a phonotactic constraint like *[−son, +voice]# (i.e.,

words cannot end with voiced obstruents) can be represented with a set of

strings that do not violate it (e.g., {aba, ba, ap, pa, . . .}) or a function thatmaps a

given string to 0 or 1 depending on whether it violates the constraint (e.g.,

f (aba) = 0, f (ab) = 1, etc.).35 Similarly, a phonological rule can be represented

with a function (obligatory rule) or relation (optional rule) that maps an input to

an output or set of outputs, respectively (e.g., f (ab) = ap or {ab, ap}). The

advantage of representing patterns in this way is the ability to identify their

invariant structural properties (examples of which will be discussed in what

follows), which hold regardless of the choice of grammatical formalism (rules,

constraints, etc.).

Importantly, this emphasis on structure is fully compatible with statistical and

quantitative approaches. For example, Hayes and Wilson’s (2008) MaxEnt

phonotactic learner (discussed in Section 3.2.3) makes use of a template for

constraints in order to structure and narrow the hypothesis space. Formal

language theory studies different kinds of templates, identifying what kinds of

patterns they can and cannot express and what distinctions algorithms have to

make to learn them. These results will be true regardless of whether or not the

constraints are weighted or used to derive probability distributions.

Foundational work in this vein includes the aforementioned (Section 3.3.1)

independent discovery by Johnson (1972) and Kaplan and Kay (1994) that

SPE grammars are regular provided the rules do not reapply to their own

structural changes.36 This means an individual phonological rule can be

compiled into an FST), and – since the regular relations are closed under

composition – an ordered set of rules can likewise be represented with a single

FST (i.e., the entire grammar is also regular). This finding established a

computational boundary between phonology and other domains like morph-

ology and syntax, which include patterns that are more complex than regular

(see Carden 1983; Culy 1985; Shieber 1985; Kobele 2006; Heinz and Idsardi

2011, 2013). It also indicated that while SPE captures the basic intuition that

phonological changes affect sounds in particular contexts, as a grammatical

formalism, context-sensitive rules are more powerful than necessary for

phonology.

35 The co-domain of the function is {0, 1} under the assumption of a categorical phonotactic
grammar. A gradient phonotactic grammar can also be modeled as a function with a real number
co-domain. See Heinz and Riggle (2011) for more on how the categorical-versus-gradient
distinction does not affect computational complexity in the sense that is relevant to FLT.

36 The need for this restriction on application is illustrated with the example rule Ø → ab / a __ b
(Kaplan and Kay 1994: 346). An “ab” string inserted by this rule could serve as the context for an
additional insertion, in which case the rule generates the context-free language anbn.
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The finite-state modeling of phonology has also been a productive route to the

development of software for implementing morpho-phonological systems

(Beesley and Karttunen 2003; Hulden 2009; Aksënova 2020; Gorman and

Sproat 2021). Koskenniemi’s (1983) two-level rule approach in particular has

served as the basis for morphological analyzers for several languages, including

low-resource languages that are less amenable to deep-learning approaches

(e.g., Çöltekin 2010 and Washington et al. 2012).

Regularity then provides a well-defined proposed computational universal

that is sufficiently expressive while ruling out a great many non-phonological

patterns. However, Heinz (2011a, 2011b) – the culmination of a line of work

initiated in Heinz (2007, 2009, 2010b) – offers the further hypothesis that

phonological patterns are in fact subregular and belong to proper subsets of

the regular languages and relations. This hypothesis is motivated by (1) typ-

ology, as the regular classes still admit phonologically implausible patterns; and

(2) learnability, as the regular classes are not learnable under a variety of

settings, including in the limit from positive data (Gold 1967) and the probably

approximately correct framework (Valiant 1984, 2013).

With respect to typology, the subregular hypothesis offers clear and testable

predictions designed to advance our understanding of the nature of phono-

logical computation. For example, Gainor et al. (2012) and Heinz and Lai

(2013) show that progressive and regressive vowel harmony is not just regular

but subsequential (i.e., deterministic), and dominant-recessive and stem-

controlled harmony patterns are what they call weakly deterministic.37 In con-

trast, unattested patterns like Sour Grapes (Padgett 1995; Wilson 2003) and

Majority Rules (Lombardi 1999; Baković 2000) fall outside of these boundaries
(the latter is in fact non-regular). In the same vein, Jardine (2016a) argues that

tonal patterns regularly exhibit greater computational complexity compared to

segmental ones.

Such hypotheses are informed by the current state of knowledge of what is

and is not attested, and therefore serve to highlight what kinds of patterns we

should be looking for in order to extend that state of knowledge. In response to

Heinz and Lai (2013) and Jardine (2016a), McCollum et al. (2020) and

Meinhardt et al. (2024) present vowel harmony patterns that meet Jardine’s

(2016a) definition of unbounded circumambience (= the conditions for a change

require unbounded lookahead in both directions from the target) and therefore

serve as evidence that challenges his argument.38 The latter work further draws

a distinction between such patterns and those they call unbounded semiambient

37 See Mohri (1997) for more on subsequential functions and their use in speech processing.
38 Importantly, though, Jardine’s (2016a) typological hypothesis is not a categorical one; indeed he

also discusses Yaka vowel harmony as a counterexample.
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(= the conditions for a change require unbounded lookahead in at most one

direction from the target).39 These kinds of typological investigations thus

result in valuable, nuanced characterizations of the computations necessary to

recognize or represent a phonological pattern.

With respect to learnability, the fact that the regular languages and relations

are not learnable from positive data means the property of regularity does not

sufficiently limit the hypothesis space of a phonological learner. In contrast, the

subregular properties that delimit proper subsets of regular do enable learning

under these conditions. The next two sections review the work demonstrating

that potential in the learning of phonotactics and mappings, respectively, much

of which builds on computational learning theory (Osherson et al. 1986; Jain

et al. 1999; Mohri et al. 2018) and grammatical inference (de la Higuera 2010;

Heinz and Sempere 2016; Wieczorek 2017).

7.1 Phonotactic Learning

Any phonotactic learner must assume something about the hypothesis space

of possible constraints that it navigates. As noted previously, FLT-based

approaches to phonotactic learning prioritize the nature of those assumptions

by characterizing the formal structure of the patterns themselves. For

example, focusing on stress patterns, Heinz (2007, 2009) formalizes phono-

logical locality with a property called neighborhood-distinctness, defined in

automata-theoretic terms as not containing multiple states that share the same

set of incoming and outgoing paths of designated lengths (or locality win-

dows). A survey of 109 stress patterns compiled by Bailey (1995) and Gordon

(2002) – now available in the StressTyp2 database (Goedemans et al. 2015) –

revealed that all of the patterns have this property. Furthermore, roughly 75

percent of them are strictly local (SL) (Edlefson et al. 2008; Rogers and

Lambert 2019), which means they belong to a highly restrictive class of

formal languages recognizable by devices that only track contiguous sub-

strings of bounded length (McNaughton and Papert 1971; Rogers et al. 2010;

Rogers and Pullum 2011). This length is often referred to as the language’s

k-value, so, for example, an SL language with k=2 can be represented with

a grammar of banned 2-length substrings (called k-factors, or, in this case,

2-factors).40

39 To distinguish these categories, Meinhardt et al. (2024) provide a formal definition of process
interaction, a topic of broad interest in theoretical phonology. See also Baković and Blumenfeld
(2019) for an algebraic treatment of process interaction, including but not limited to how it
relates to opacity.

40 Strictly local languages are essentially non-probabilistic n-gram models, and like n-grams, a
string’s k-factors overlap. For example, the 2-factors of CVC are #C, CV, VC, and C#.
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As an example, consider a language that only allows syllables of the formCV,

meaning all words in this language are of the form CVn for some integer n.

Abstracting away from individual consonant and vowel differences for simpli-

city, this language can be represented with the SL2 grammar in (31):

(31) #V;CC;VV;C#gf

The reader can verify that all strings in CVn are constructed from the 2-factors

#C, CV, VC, and V#, none of which are in this grammar. Put another way, any

string that violates this language’s phonotactic constraints will contain at least

one of the prohibited 2-factors in (31).

As proposed computational universals or at least strong tendencies, proper-

ties such as neighborhood-distinctness and strict locality serve to structure and

restrict the hypothesis space a learner has to navigate, greatly reducing the

number of generalizations it needs to consider. They have also served as the

basis for provably correct learning algorithms that establish what kinds of

patterns can be learned from data meeting certain criteria. Such proofs of

correctness provide a guarantee that any pattern from any language that has

the property in question can be learned, in contrast with simulation-based

approaches in which success on particular languages and patterns must be

assessed on a case-by-case basis.41

Heinz (2010b) expands on this approach in an FLT analysis of long-distance

phonotactic dependencies – such as consonant harmony – that apply across an

arbitrary number of intervening segments. While not SL, both symmetric and

asymmetric long-distance agreement patterns can be described with strictly

piecewise (SP) or precedence grammars, provided they do not involve blocking.

A version of the string extension learner proposed in Heinz (2010a) for SL

languages is shown to learn SP patterns in the limit from positive data.

Furthermore, if long-distance agreement with blocking is unattested, as sug-

gested by the typological surveys of Hansson (2001) and Rose and Walker

(2004), the SP characterization provides an explanation for that gap.

An SP grammar differs from an SL grammar in that it contains the banned

subsequences, or precedence relations among segments (i.e., segment x cannot

precede segment y in a string, with potentially other segments intervening

between them). Blocking patterns are out of reach because they place an

added condition on whether a given subsequence is permitted: segment x cannot

precede segment y unless segment z intervenes. Consider a sibilant harmony

pattern in which [s] and [ʃ] cannot co-occur in a word unless [k] intervenes. The

41 See Heinz (2011) for more discussion of algorithmic versus simulation-based approaches to
phonological learning problems.
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SP2 grammar for such a language is shown in (32). (Remember the items in this

grammar are interpreted as subsequences, not contiguous factors.)

(32) sʃ ; ʃsgf

If, however, the agreement is blocked by [k] – for example, if sakaʃ is well

formed but *sapaʃ is not – then we have a contradiction. The subsequence sʃ

must be in the grammar to rule out *sapaʃ, but that grammar will then also

necessarily (and incorrectly) reject sakaʃ.42 Thus the inability of SP to handle

long-distance agreement with blocking combined with the typological predic-

tion that such patterns are not possible suggests that precedence is a useful

characterization of this category of phonotactic patterns.

However, subsequent work challenged that typological prediction with reported

cases of long-distance agreementwith blocking (e.g., Hansson 2010; Jurgec 2011).

Based on such cases, McMullin (2016) argues that the tier-based strictly local

(TSL) languages defined by Heinz et al. (2011) are a better characterization of

long-distance patterns. Tier-based strictly local languages are definedwith a subset

of segments called the tier, over which SL constraints are defined. For example,

sibilant harmony (without blocking) can be handled with a tier that includes only

sibilants; the strings sapaʃ and sapas will be submitted to the grammar as just sʃ

and ss, with non-tier segments removed. The SL2 grammar in (33) then suffices to

rule out the former and accept the latter.

(33) sʃ ; ʃsgf

Blocking is handled simply by including the blocking segments on the tier. In

the example in which [k] blocks the sibilant harmony, the strings *sapaʃ and

sakaʃ are correctly distinguished, because the former (sʃ with non-tier segments

removed) but not the latter (skʃ) includes the banned sequence sʃ. As for

learning, TSL can be learned by the same algorithms that learn SL, provided

the tier is already known, but algorithms also exist for learning both the

grammar and the tier (Jardine and Heinz 2016a; Jardine and McMullin 2017).

Heinz’s (2010b) hypothesis that phonotactics are either SL or SP fit the assess-

ment at the time that long-distance consonant agreement with blocking is

unattested, and it also proposed an explanation for why that is the case (i.e., because

of the way phonotactics are learned). The work on TSL that followed was motiv-

ated by a revision of that assessment, but equally important iswhat it revealed about

42 Onemight think that raising the k-value to 3 will solve this problem, since we can then include skʃ
in the grammar but omit spʃ. But the interleaving nature of subsequences means we can still
construct an illegal word that satisfies this grammar: sakasaʃakaʃ includes the allowed sequence
skʃ twice, with the [s] of the second token preceding the ʃ of the first one. The result is an sʃ
subsequence without an intervening [k].
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the formal relationship between competing models of phonotactic grammars.43

Precedence versus tiers as defined by SP and TSL are not just notational variants or

competing ways of thinking about locality; they are distinct, formally defined

properties that either do or do not hold of a given pattern.44 Neither property

subsumes the other, as each can describe patterns the other cannot.45

An example of a pattern that is TSL but not SP was already discussed:

consonant harmony with blocking. For an example that is SP but not TSL,

consider a language with the alphabet {a, b, c, d} with two constraints: “a”

cannot precede “b”, and “b” cannot precede “c”. This language is straightfor-

wardly SP2, as witnessed by the grammar in (34).

(34) ab; bcgf

As a TSL2 language, this pattern requires a tier of {a, b, c} and the same

grammar interpreted as factors instead of subsequences. However, the string

acb, in which an “a” precedes a “b”, is incorrectly accepted, because its tier-

string (also acb) contains neither of the banned factors.46

Formal language theory approaches to phonotactic learning traditionally

forgo the use of statistics in favor of grammatical inference techniques that

capitalize on the assumed structure of the hypothesis space. But Wilson and

Gallagher (2018) argue that without statistics a feature-based model will be

unable to determine which of the many possible feature representations are at

the right level of specificity for the constraint it is trying to learn. For example,

a language that enforces intervocalic voicing will allow sequences like

[igi], [aba], and [ede], but will disallow *[iki], *[apa], and *[ete]. Some

featural representations distinguish these two groups, such as ½�cons;þsyl�
½þvoice�½�cons;þsyl� versus ½�cons;þsyl�½�voice�½�cons;þsyl�, but others
do not, such as ½�cons;þsyl�½þcons�½�cons;þsyl�; ½�cons;þsyl�½�son�
½�cons; þsyl�, or ½�cons;þsyl�½�cont�½�cons;þsyl�, etcetera. Without

43 The interest in TSL languages also inspired a series of extensions and applications to a variety of
topics, including the coexistence of constraints on multiple tiers (Aksënova and Deshmukh
2018), morphotactic constraints (Aksënova et al. 2016), and even syntactic dependencies (Graf
and Shafiei 2019; Vu et al. 2019).

44 See also Lambert (2022, 2023) for an algebraic and model-theoretic approach to characterizing
the type of relativized locality enacted by TSL.

45 The search-copy model of vowel harmony (Mailhot and Reiss 2007; Nevins 2010) offers another
comparison between precedence and locality in the context of processes. In this model, a
recipient vowel searches for the first available donor vowel (i.e., its closest predecessor) that
has the feature it needs to copy. By centralizing precedence, the model forgoes the need for any
formal encoding of locality, including tiers. Furthermore, because underspecification is the
impetus for a recipient vowel to initiate a search, blocking can still be handled with precedence
by fully specifying opaque vowels.

46 Thanks to Jeffrey Heinz (p.c.) for this example.
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statistics to assess the accuracy of these competing constraints, the learner will

not be able to converge on the correct one.

In response, Chandlee et al. (2019) and Rawski (2021) present a structural

inference approach to this problem that exploits the inherent structure of the

space of possible feature representations. In particular, substructures such as

k-factors form a partial order: [+nasal] is a substructure of [+nasal, +voice],

which is in turn a substructure of [+nasal, +voice, +labial], and so on. This

inherent ordering among candidate constraints establishes the following gram-

matical entailments: if a structure is grammatical, so must be all of the structures

it contains (i.e., sit below it in the order), and likewise if a structure is ungram-

matical, so must be all of the structures that contain it (i.e., sit above it in the

order).

The proposed algorithm (the bottom-up factor inference algorithm, or

BUFIA) takes advantage of these entailments to greatly reduce the number of

constraints it has to consider. As the name indicates, it proceeds bottom up

through the order to first consider the “smallest” or most general constraints. If a

structure is observed in the input data, then there cannot be a constraint against

it, and so the algorithm moves on to the next structures in the order (e.g., if any

[+nasal] segment exists, then *[+nasal] is rejected but �½þnasal;þvoice�;
�½þnasal;�cont�, etc. are still in the mix). In contrast, if no [+nasal] segment

is found, then *[+nasal] can be kept as a constraint, and importantly, no

constraint with [+nasal] as a substructure needs to be considered.

To address the redundancy in the set of constraints identified by this process

(i.e., all constraints that are maximally general and equally describe the data will

be returned), Rawski (2021) proposes additional abductive principles to prune

the search space of constraints, including a requirement that an added constraint

must rule out at least one new structure, or the stronger requirement that it must

rule out an entirely new set of structures. Such principles share the goals of

selection criteria like Hayes and Wilson’s (2008) accuracy and generality or

Wilson and Gallagher’s (2018) measure of gain, but being situated in a deter-

ministic learner they always find the same set of constraints.

7.2 Learning Input–Output Maps

In addition to the research on phonotactics, a parallel line of work in FLT has

focused on the characterization and learning of input–output maps. As noted

previously (Section 3.2.2), maps are extensional representations of phono-

logical processes, whose properties hold regardless of the grammatical formal-

ism that is chosen to encode them intensionally. This distinction between

intensions and extensions is central to the phonological research grounded in
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FLT. The finding that phonological grammars are regular was first based on an

assumption that those grammars consist of a set of rules. Its further exploration

in the context of constraint-based grammars (Section 3.3.1) was predicated on

the idea that regularity should be preserved even without rules. Likewise,

Tesar’s (2014) ODL learner (Section 3.2.2) capitalized on a property of maps:

OT grammars are not necessarily output driven, but those that are (i.e., those

that generate an output-driven map) have learnability advantages. This section

presents work that has similarly capitalized on the learnability advantages of

subregular properties of maps.

The learning of maps, then, is distinct from the learning of rules: no particular

rule formalism is assumed nor does it play any role in the learning algorithm.

While test cases often refer to individual generalizations (e.g., final devoicing,

intervocalic voicing, nasal assimilation, etc.) that one might represent inten-

sionally with a rule, the target of the learner is still a map that could be generated

by any number of grammatical devices. Furthermore, a single map can reflect

the generalizations of multiple rules, even interacting ones (see Chandlee et al.

2018; Chandlee 2022). The learners surveyed in what follows in fact target

classes of maps and will succeed on any map in its class, regardless of how

many rules it represents.

The learnability advantage of subregularity for learning maps echoes the

previous discussion of learning phonotactics: like the regular languages, the

class of regular relations is insufficiently structured to guarantee learning from

positive data. Functional counterparts to subregular languages have therefore

been employed to address this problem. For example, the SL languages

correspond to local functions (Berstel 1982; Vaysse 1986; Lind and Marcus

1995; see also Sakarovitch 2009), which compute the output string for a given

input string based only on an examination of contiguous substrings (k-factors

again) of bounded length. These functions are thus Markovian in that they can

only make use of the most recent substring when deciding what to output next

(with the degree of recentness determined by the size of k). The local functions

have been further distinguished into two classes that differ in whether the

examined substring is in the input or output string (Chandlee 2014), namely

the input strictly local (ISL) and output strictly local (OSL) functions.47 And

just as the TSL languages augment the SL languages with the concept of a

tier, tier-based counterparts to ISL and OSL have also been defined to model

long-distance processes (Hao and Bowers 2019; Burness et al. 2021; Burness

2022).

47 The difference in empirical coverage between input- and output-based locality can roughly be
understood in terms of whether the “process iterates.”
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Algorithms exist for all of these classes that can identify any function in the

target k-local class (Chandlee et al. 2014; Chandlee et al. 2015; Burness and

McMullin 2019), or even any class that can be represented with a deterministic

transducer (Jardine et al. 2014). Recent work has also tackled the problem of

learning both the phonological map and the lexicon by decomposing the

function that maps meanings to SRs into a meaning → UR lexicon function

and the UR → SR phonological function (Hua et al. 2021; Hua and Jardine

2021). Again the learner capitalizes on the assumption that the phonological

function is subregular – specifically k-ISL – to converge on its target grammar.

The algorithms proposed to establish the formal learnability of these classes

serve to demonstrate how subregular properties structure the hypothesis space

of functions in a way that enables learning from positive data. The proofs of

learnability often take the form of first defining a characteristic or sufficient

sample and then showing how the algorithm, when given data with that sample

as a subset, is guaranteed to converge on the target function. But the often

unrealistic nature of characteristic samples – including impossible sequences as

well as not allowing for various sources of noise such as optionality, variation,

and exceptions –means these algorithms are only the first step toward develop-

ing a viable phonological learning model.

For example, in Gildea and Jurafsky’s (1996) experiments with a learning

algorithm for subsequential functions (the onward subsequential transducer infer-

ence algorithm, or OSTIA; Oncina et al. 1993), they found that it cannot learn the

English flapping rule even when given nearly 100,000 (input, output) string pairs

derived from the CMU Pronunciation Dictionary. The issue is not the amount of

data – OSTIA in fact requires little data compared to statistical learning models –

but the type of data. Specifically, it would need to see whether flapping applies to

impossible strings, such as /ttt/. Gildea and Jurafsky’s solution is to augment the

learner with three phonologically informed learning biases: faithfulness (under-

lying segments undergominimal changes), community (segments in natural classes

tend to pattern together), and the use of context to identify phonological changes.

More recent work has explored additional routes for overcoming data limita-

tions, including the use of semi-determinism (Beros and de la Higuera 2016) for

optionality (Heinz 2020), as well as methods for generalizing over features

(Markowska and Heinz 2023) and for identifying categorical constraints in the

presence of exceptions (Dai 2022; Wu and Heinz 2023).

7.3 Model Theoretic Phonology

Much of the work mentioned so far has been grounded in the finite-state

formalism, but other developments have demonstrated the utility of model
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theoretic approaches. Graf (2009, 2010) argues that the use of model theory for

theory comparison is more efficient than an empirical approach, because theor-

ies (and variants of theories) can be grouped together based on how powerful a

logic is needed to implement their assumptions. From there, we can assess what

classes of phenomena a particular implementation accommodates, rather than

separately testing individual patterns in individual theories. This type of inves-

tigation also provides a criterion for identifying the crucial distinctions among

theories (which can be obscured given their extensive surface differences):

specifically, the ones that necessitate an increase in logical power.

In addition, because logical characterizations operate over graphs, and strings

are just a particular type of graph, model theory offers a straightforward way to

extend string-based definitions of properties like locality to other structures,

including nonlinear representations like trees, metrical grids (Liberman 1975;

Liberman and Prince 1977; Prince 1983; Halle and Vergnaud 1987; Idsardi

1988; Hayes 1995), feature geometry (Sagey, 1986; Clements and Hume,

1995), and even sign (Rawski 2017).48 For example, Jardine (2016b) presents

a formal and restrictive theory of tone pattern well-formedness by applying a

logical characterization of SL (i.e., the conjunction of negative literals, or CNL;

see Strother-Garcia et al. 2016) to autosegmental graphs. Importantly, the use of

logic allows the definition of locality to remain fixed while the representation is

changed, highlighting the ways in which representation can modulate both

perceived and formal pattern complexity.

As for input–output maps, logical characterizations of subregular function

classes have been explored in work inspired by Engelfriet and Hoogeboom’s

(2001) finding that regular functions are equivalent to monadic second-order

(MSO) graph interpretations (Enderton 1972).49 The restrictions that define

the different subregular function classes correspond to restrictions on the logic

used for the interpretation. For example, Chandlee and Lindell (2016) show

that as graph interpretations the ISL functions require only quantifier-free

(QF) first-order (FO) logic. Chandlee and Jardine (2019, 2021) use this

characterization of locality to define autosegmental input strictly local

(AISL) functions for tone processes. An AISL function is a QF graph trans-

duction over autosegmental graphs. They show how AISL enables a formal

and nuanced investigation into the conditions under which ARs make a local

48 In contrast, finite-state characterizations require distinct formal machinery when the representa-
tions go beyond simple strings – for example, Kornai’s (1991) use of multi-tape transducers for
autosegmental phonology (Goldsmith 1976).

49 As noted previously (fn. 21), the use of the term regular functions here refers to the class of
mappings generated by two-way deterministic FSTs, which are more expressive than the one-
way FSTs used by Kaplan and Kay (1994).
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analysis of long-distance tone processes possible, as some but not all are local

over both strings and ARs, while others are local over only strings or only

ARs.50 Again, what it means to be local here is not impressionistic, but an

exact criterion (namely, QF FO).

In addition, graph interpretation has also been a tool for assessing the

significance of differences among alternative representations. For example,

Strother-Garcia (2019) shows that three different syllable representations (i.e.,

trees, strings labeled with syllable positions, and strings with syllable boundar-

ies marked) are all QF-bi-interpretable, meaning each can be converted into the

other with a QF interpretation. Here the use of QF reflects the degree to which

the differences between representations are meaningful. The fact that such a

limited logic is sufficient for these conversions is taken as evidence that they are

essentially notational equivalents. In the same vein, Oakden (2020) shows that

Yip’s (1989) and Bao’s (1990) proposed tonal representations are also QF-bi-

interpretable, Jardine et al. (2021) show that there is a FO-definable interpret-

ation between constraints stated in Q-theory (Shih and Inkelas 2019) and those

stated over ARs, and S. Nelson (2022) uses CNL and CPL (conjunction of

positive literals) logics to establish the extensional equivalence of various

feature systems.

Importantly, while the different characterizations of subregular languages and

functions (i.e., finite-state versus logic; see also Lambert 2022 for an algebraic

treatment) are based in distinct formalisms that have distinct advantages, they

converge to define the exact same classes of objects.51 Thinking about these

objects in terms of these differing formalisms can only serve to deepen our

understanding of the nature of the phonological patterns they represent. As

Engelfriet and Hoogeboom (2001: 216) write, “It is always a pleasant surprise

when two formalisms, introduced with different motivations, turn out to be

equally powerful, as this indicates that the underlying concept is a natural one.”

As noted by Heinz (2018), FLT offers a way to study phonology while being

as atheoretical as one can get. This means we can gather insights into what

phonology is – including predictions for what it can and cannot do, comparisons

among different categories of patterns, and formally grounded criteria for what

the relevant categories actually are – without being constrained by the lens of

any one theory or formalism. This in turn allows us to uncover the aspects of our

50 The AISL functions omit quantifiers and are also limited to referencing substructures in the input
graph only. Relaxing that second restriction to allow reference to the output structure allows for a
limited type of recursion that Chandlee and Jardine (2021) use as a logical approximation of the
OSL functions.

51 The finite-state characterizations have a decided advantage when it comes to establishing the
learnability properties of these classes, as much more grammatical inference work has made use
of finite-state representations compared to logic. See, for example, Heinz et al. (2015).

53Quantitative and Computational Approaches

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
42

04
02

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009420402


theories that do and do not reflect those independently discovered properties of

our shared object of study. The finite-state treatments of SPE and OTmentioned

previously are an example of this type of reckoning. More recently, work by

Lamont (2019, 2021, 2022) has explored how the ways in which constraint-

based grammars over-generate depend on different types of markedness con-

straints (local/substrings versus global/subsequences) and different versions of

optimization (OT versus HS).

8 Conclusion

The variety and volume of work covered in this Element are a testament to how

prevalent quantitative and computational approaches to phonology have

become, and that trend is likely to not only continue but grow in the years

ahead. Researchers focusing on a wide range of puzzles and problems related to

the acquisition and representation of phonological knowledge are more fully

embracing the value if not the necessity of computational, mathematical, and/or

statistical tools in their investigations. In turn, these methods are becoming an

increasingly necessary component of the teaching of and training in phonology

as a field of study. The kinds of analysis they enable have greatly augmented our

capacity for identifying and characterizing phonological patterns and for study-

ing what can be learned under what conditions, from both a formal and an

empirical perspective. Lastly, these approaches have equipped phonologists

with a range of options for implementing our theories, forcing us to make

them more precise and enabling us to better assess what remains to be uncovered

with respect to the phonological component of natural languages.
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