Published online by Cambridge University Press: 05 March 2013
Introduction
Aggregation of infinitely but still countably many inputs is important in several mathematical areas, such as discrete probability theory, but also in non-mathematical areas, such as decision problems with an infinite jury, game theory with infinitely many players, etc. Though these theoretical tasks seem to be far from reality, they enable a better understanding of decision problems with extremely huge juries, game theoretical problems with extremely many players, etc.; see [333, 368, 416].
In Section A.2, based on [308], we discuss infinitary aggregation functions on sequences possessing some a priori given properties, such as additivity, comonotone additivity, symmetry, etc. On the other side we discuss infinitary aggregation functions A(∞) : [0, 1]ℕ → [0, 1] related to a given extended aggregation function A: ⋃n∈ℕ [0, 1]n → [0, 1], where special attention is paid to t-norms, t-conorms, and weighted arithmetic means. Note that the discussion of the infinitary arithmetic mean AM(∞) : [0, 1]ℕ → [0, 1] can be found in [141, 142].
General infinitary aggregation is discussed in Section A.3, thus extending the results from Section A.2. Note that in such case, some restrictions on the domain of aggregation functions is usually necessary. For example, to apply Lebesgue, Choquet or Sugeno integrals one should require the measurability of the input function to be aggregated.
Infinitary aggregation functions on sequences
We extend the notion of the usual aggregation function to the case of infinite inputs.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.