Published online by Cambridge University Press: 30 May 2025
We explain how weight-two modular forms on 0.N/ are related to modular symbols, and how to use this to explicitly compute spaces of modular forms.
The definition of the spaces of modular forms as functions on the upper half plane satisfying a certain equation is very abstract. The definition of the Hecke operators even more so. Nevertheless, one wishes to carry out explicit investigations involving these objects.
We are fortunate that we now have methods available that allow us to transform the vector space of cusp forms of given weight and level into a concrete object, which can be explicitly computed. We have the work of Atkin–Lehner, Birch, Swinnerton-Dyer, Manin, Mazur, Merel, and many others to thank for this (see, e.g., [Birch and Kuyk 1975; Cremona 1997; Mazur 1973; Merel 1994]). For example, we can use the Eichler–Selberg trace formula, as extended in [Hijikata 1974], to compute characteristic polynomials of Hecke operators. Then the method described in [Wada 1971] gives a basis for certain spaces of modular forms. Alternatively, we can compute ⊝-series using Brandt matrices and quaternion algebras as in [Kohel 2001; Pizer 1980], or we can use a closely related geometric method that involves the module of enhanced supersingular elliptic curves [Mestre 1986]. Another related method of Birch [1991] is very fast, but gives only a piece of the full space of modular forms. The power of the modular symbols approach was demonstrated by Cremona in his book [1997], where he systematically computes a large table of invariants of all elliptic curves of conductor up to 1000 (his online tables [Cremona undated] go well beyond 100,000).
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.