Published online by Cambridge University Press: 30 May 2025
This is an introduction to some aspects of the arithmetic of elliptic curves, intended for readers with little or no background in number theory and algebraic geometry. In keeping with the rest of this volume, the presentation has an algorithmic slant. We also touch lightly on curves of higher genus. Readers desiring a more systematic development should consult one of the references for further reading suggested at the end.
Let k be a field. For instance, k could be the field ℚ of rational numbers, the fieldℝ of real numbers, the field ℂ of complex numbers, the field ℚp of p-adic numbers (see [Koblitz 1984] for an introduction), or the finite field 𝔽q of q elements (see Chapter I of [Serre 1973]). Let K be an algebraic closure of K. A (geometrically integral, affine) plane curve X over K is defined by an equation f(x, y).
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.