Published online by Cambridge University Press: 27 June 2025
Topological complexity of semialgebraic sets in ℝk has been studied by many researchers over the past fifty years. An important measure of the topological complexity are the Betti numbers. Quantitative bounds on the Betti numbers of a semialgebraic set in terms of various parameters (such as the number and the degrees of the polynomials defining it, the dimension of the set etc.) have proved useful in several applications in theoretical computer science and discrete geometry. The main goal of this survey paper is to provide an up to date account of the known bounds on the Betti numbers of semialgebraic sets in terms of various parameters, sketch briefly some of the applications, and also survey what is known about the complexity of algorithms for computing them.
1. Introduction
Let R be a real closed field and S a semialgebraic subset of Rk, defined by a Boolean formula, whose atoms are of the form P = 0, P > 0 , P < 0 , where P ∈ p for some finite family of polynomials P ⊂ R[X1,…, X k . It is well known [Bochnak et al. 1987] that such sets are finitely triangulable. Moreover, if the cardinality of P and the degrees of the polynomials in P are bounded, then the number of topological types possible for S is finite [Bochnak et al. 1987]. (Here, two sets have the same topological type if they are semialgebraically homeomorphic). A natural problem then is to bound the topological complexity of S in terms of the various parameters of the formula defining S.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.