Published online by Cambridge University Press: 27 June 2025
We study metric properties of convex bodies B and their polars B°, where B is the convex hull of an orbit under the action of a compact group G. Examples include the Traveling Salesman Polytope in polyhedral combinatorics (G = Sn, the symmetric group), the set of nonnegative polynomials in real algebraic geometry (G = SO(n), the special orthogonal group), and the convex hull of the Grassmannian and the unit comass ball in the theory of calibrated geometries (G = SO(n), but with a different action). We compute the radius of the largest ball contained in the symmetric Traveling Salesman Polytope, give a reasonably tight estimate for the radius of the Euclidean ball containing the unit comass ball and review (sometimes with simpler and unified proofs) recent results on the structure of the set of nonnegative polynomials (the radius of the inscribed ball, volume estimates, and relations to the sums of squares). Our main tool is a new simple description of the ellipsoid of the largest volume contained in B°.
1. Introduction and Examples
Let Gbea compact group acting in a finite-dimensional real vector space V and let υ ∈ V be a point. The main object of this paper is the convex hull
B = B( υ) = conv(g υ : g ∈ G)
Objects such as B and B° appear in many different contexts. We give three examples below.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.